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Preface 
 

Life is what happens to you while  

 you're busy making other plans. 

–– John Lennon 
 

This thesis concludes a ―work in progress‖ that has lasted over a decade – my Master‘s Degree in Computer 

Science; finally! I began studying in 1995, but was fortunate enough to get a very nice job within the first two 

years; a job that I hold and treasure to this day. Combined with life in general, this naturally slowed things 

down, but almost never to a complete halt, often because of friendly reminders from my family and friends. 

 

Thesis –– Formally, the workload of the project this thesis represents is 30 ECTS, and it was completed under 

the supervision of Professor Eric Jul at the University of Copenhagen, Denmark. The work carried out was done 

from late 2006 to August 2007, and the defence was held on November 2nd, 2007. This public version contains 

only small changes from the actual thesis handed in for grading, and the presentation delivered at the oral 

defence is available as [Rode07b]. During this period, many things happened in my life, good and bad. First and 

foremost, I became a father to a wonderful son named Theodor Rode von Essen; an eye—opener, to say the 

least, concerning such concepts as time, family, and especially oneself. Unfortunately, my family and I also 

experienced several deaths in the near family, especially that of my beloved father, Henning Rode, who died 

only a week before my defence. Secondarily, the company where I work was sold causing quite a few changes in 

my everyday life. I studied for the Java 5 certification, but never got around to take the exam (wonder why?). 

My wife and I had our kitchen completely renovated over a strenuous period of almost six months. And then 

some...! All these things one way or another influenced this thesis, but the reality is also that I at times was not 

focused enough. I did not manage to state precise and tangible goals for the work to be performed, causing me 

to pursue and writing about many different areas of interest related to OO and design patterns.  

 

Originally, this project was intended to evaluate different aspects related to the two—way connection between 

the ―Gang of Four‖ patterns and the programming languages used for implementation. Much work was put into 

formulating several evaluation criteria in a consistent format, albeit in broad terms. Simplified examples of 

criteria include how the use of natural language affects the applicability of pattern X in language Y, or vice 

versa; if the naming of pattern participants is consistent and independent of specific OO programming 

paradigms; or how easy is it to implement pattern X in language Y? Java 6, and possibly other languages, should 

act as the catalysts for the evaluations, but the criteria spawned more questions than answers because they 

were more theoretical than practical in nature. However, the intent had always been to make this a practical 

project with emphasis on the practical application of design patterns, but the evaluation approach seemed to 

collide with this. Hence, when I discovered several articles on pattern application utilising specific language 

features that caused ―simpler‖ implementations, or even pattern componentizations, in various languages, the 

idea arose to compare such findings with Java 6 implementations of the ―Gang of Four‖ patterns. I also realised 

that the ―Gang of Four‖ patterns should be evaluated as a whole rather than an arbitrary sub—set because the 

patterns were published as a complete pattern system with many internal relationships and similarities. The 

work performed is still an evaluation, but focus thus moved from several forms of evaluation of a handful of the 
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―Gang of Four‖ patterns to more concise and practical investigation of how Java 6 paradigms can influence the 

application of all the ―Gang of Four‖ patterns. The final work description for the work performed is approved by 

Eric Jul and is available as [Rode07a]. 

 

Thesis Website –– This thesis has a dedicated website at http://www.rode.dk/thesis, which offers this thesis 

in a slightly modified online HTML version; the presentation given at the oral defence; the developed source 

code; generated JavaDoc; etc. 

 

Acknowledgements –– I can honestly say, without a doubt, that I would never have been able to complete my 

degree, and especially this thesis, without the love and continuous support from my beloved wife, Marina. 

Though alien to computer science, she also offered much appreciated assistance with proof—reading and layout. 

Jonna von Essen also helped with last minute, but very effective, proof—reading.  

 

My workplace and colleagues also made this thesis possible as they graciously allowed me to take time off to 

complete it, thereby burdening themselves with even more work. Several people provided invaluable critique, 

some of which I unwisely ignored . Morten Wolf assisted with harsh, but earnest proof—reading. Jesper Steen 

Møller provided much appreciated input and Erik W. Rasmussen did as well. Furthermore, Brian Grunnet lent me 

practically all the books cited in this thesis; some of them have since become mine due to coffee stains and 

undeniable traces of claws from a cat.  

 

Finally, I wish to thank Eric Jul for allowing me to undertake a somewhat unorthodox but tangible and hands—on 

thesis that is actually highly relevant to me. I suspect this is also the case for my co—workers and the likes. 

Eric‘s pragmatic approach to this project, even after I changed focus half way through, as well as our many 

discussions, helped me overcome seemingly overwhelming obstacles to eventually complete this thesis.  

 

Prerequisites –– The reader is assumed to have an understanding of computer science corresponding to at least 

graduate level. Familiarity with Object—Orientation and Java is expected, but in—depth knowledge of pattern 

theory is not required as this thesis presents an introduction to pattern theory and how it relates to OO. 

However, practical experience with software design patterns and especially the ―Gang of Four‖ design patterns 

is a definite plus. A sense of humour is not a bad thing either. 

 

Keywords –– Design Patterns; Gang of Four; Java 6; Object—Orientation; Language Features 

http://www.rode.dk/thesis
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Colophon 
This thesis is written in UK English, set with Trebuchet MS, 9pt, using a line spacing of 1.5. Program listings are 

illustrated with Courier New, 6pt, and syntax highlighted. Program code inlined in normal text is written using 

Courier New, 10pt, in grey. Quotations are written using Times New Roman, 9pt, in italics; bold text within 

quotations identifies the author being quoted, or emphasises issues deemed important by the undersigned. 

Important terms or names, such as design pattern names, classifications, concepts, and type names are 

capitalised, as the Factory Method pattern or the Equilibrium property pertaining to pattern quality.  

 

References are alphabetised by the surname of the primary author, followed by the year of publication if 

possible. Citations are written in square brackets, separated by semicolon in alphabetical order, including the 

name and possible year with two digits only, for example [Alexander77; Lea00]. Page, table, figure, or item 

references are prefixed with p, t, f, and i, respectively, for example [Lea00, i.12] for the twelfth FAQ item 

presented there. Page references are supplied if possible and only if the reference in question has explicit page 

numbers, for example [Gamma95, p.6]. An item will be referenced the first time encountered in the context at 

hand, and only again if the context warrants it.  

 

Figures, tables, program listings, and examples are enumerated for easy reference. The enumeration format is 

the chapter number followed by a dot and a sequence number local to the chapter, e.g. 2.1, 2.2, 3.1, 4.1, 4.2, 

4.3, etc. References to chapters, sections, figures, tables, program listings, and examples are set in bold—face, 

as figure 2.1. Cross—references spanning several pages will generally be followed by the page number to the 

reference in question, as figure 2.1 on page 13. 
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Abstract 
In this project, we perform an evaluation of the ―Gang of Four‖ design patterns from a practical and 

experimental point of view using Java 6 as the implementation language. We investigate how Java 6 language 

features affect the application of the ―Gang of Four‖ design patterns, individually and collectively. The 

investigation focuses on how the practical use of language features can affect the design pattern 

implementations, not how the features are constructed. To perform a reasonably structured and verifiable 

evaluation, we define a general evaluation approach on how to evaluate the ―Gang of Four‖ patterns using a 

language as a catalyst. The premise is to implement all pattern functionality described in Implementation and 

Sample Code elements in the ―Gang of Four‖ pattern descriptions, as these are the elements that primarily 

target the practical implementation, and evaluate the outcome.  

 

Using the defined approach, we implement the ―Gang of Four‖ patterns in Java 6 and investigate use of core 

language features (types, generics, closures, etc.), reflection (class literals, dynamic proxies, annotations, 

etc.), and special language mechanisms (synchronisation, serialization, cloning, etc.). The individual pattern 

evaluations show that with a few exceptions, all pattern functionality described in the Implementation and 

Sample Code elements, including Meta—information, can be implemented or simulated in Java 6 using the 

investigated features. The comparative evaluation shows that Java‘s mixture of static and dynamic features are 

very well suited to express the ―Gang of Four‖ pattern functionality. Creational and especially Behavioural 

patterns benefit from dynamic usage, while the static features make the implementations more robust, possibly 

reusable, and clarify pattern intent. The implementations furthermore provide novel, or at least alternative, 

approaches on how to implement Abstract Factory, Factory Method, Memento, Observer, Proxy, Singleton, and 

State in Java 6.  
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Resumé 
Dette projekt omhandler en evaluering af ‖Gang of Four‖ designmønstrene (engelsk: design patterns) ud fra en 

praktisk og eksperimentel tilgang, hvor Java 6 er programmeringssproget, der bruges til implementeringen. Vi 

undersøger, hvordan sprogegenskaber i Java 6 påvirker anvendelsen og implementeringen af ‖Gang of Four‖ 

designmønstrene, individuelt og sammenholdt for alle mønstrene. Evalueringen fokuserer på, hvordan den 

praktiske brug af konstruktioner i Java kan påvirke implementeringen af mønstrene, ikke hvordan 

konstruktionerne selv er konstrueret. For at udføre en rimelig struktureret og validerbar evaluering, definerer vi 

en generel fremgangsmåde til at evaluere ‖Gang of Four‖ mønstrene ved brug af et givent programmeringssprog 

som katalysator. Udgangspunktet er, at al mønsterfunktionalitet beskrevet i ‖Implementation‖ og ‖Sample 

Code‖ elementerne i mønsterbeskrivelserne skal forsøges implementeret og resultatet derefter analyseres, idet 

disse er de primære elementer med fokus på den praktiske anvendelse.  

 

Vi implementerer ‖Gang of Four‖ mønstrene inden for rammerne af den definerede fremgangsmåde og 

undersøger brugen af grundlæggende sprogegenskaber (typer, parameteriserede typer, etc.), refleksion 

(klasser, dynamiske proxier, annoteringer, etc.), samt specielle sprogmekanismer (synkronisering, serialisering, 

kloning, etc.). De individuelle evalueringer af mønstrene viser, at al mønsterfunktionalitet fra ‖Implementation‖ 

og ‖Sample Code‖ elementerne kan implementeres eller simuleres i Java 6 ved brug af de undersøgte 

konstruktioner med få undtagelser. Den sammenlignende evaluering viser, at Javas blanding af statiske og 

dynamiske egenskaber er endog meget god til at udtrykke funktionaliteten beskrevet i ‖Gang of Four‖ 

mønstrene. ‖Creational‖, men især ‖Behavioural‖ mønstre drager fordel af de dynamiske egenskaber, mens 

statiske egenskaber medvirker til, at implementeringerne bliver mere robuste, muligvis genbrugelige, og 

tydeligør mønsterfunktionalitet. Endeligt frembringer evalueringen nye, eller i det mindste alternative, tilgange 

til at implementere ‖Abstract Factory‖, ‖Factory Method‖, ‖Memento‖, ‖Observer‖, ‖Proxy‖, ‖Singleton‖, og 

‖State‖ i Java 6. 
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1. Introduction 
 

Life has been so much easier  

since Science invented Magic. 

–– Marge Simpson 
 

In this thesis, we evaluate software design patterns from a programming language and practical point of view in 

an Object—Oriented (OO) environment. We investigate how language paradigms in Java 6 [Gosling05] affect the 

application of all the ―Gang of Four‖ (GoF) [Gamma95] design patterns. The investigation focuses on how the 

practical use, not the construction, of language features can affect the design pattern implementations. This 

chapter presents the motivation for undertaking this project, as well as the goals we want to achieve. We 

outline the work performed during this thesis, both theoretical and practical, and we conclude this introductory 

chapter with an extensive summary of the content presented in this thesis. 

1.1. Motivation 
Designing and developing complex software systems is not, and has never been, an easy task. On the contrary, 

the process is often very time consuming and requires interaction between many different people, skills, and 

roles, internally and externally. Many, often contradictory, factors must be addressed in the design process and 

at different levels, such as the need for maintainability versus quick delivery, flexibility versus speed, etc. The 

domain may offer tools, notations, principles, and methods to guide the development process, but they cannot 

shield against bad design decisions made by humans, and they may not even be standardised. For example, 

there is a lack of consensus on how to approach OO development, and several OO methods exist, each offering 

their take on how to design OO systems. The Unified Modelling Language (UML) [UML05] is commonly used to 

model the design, words like ―class‖ and ―object‖ denote commonly accepted concepts, and Gamma et al. 

suggest favouring object composition over inheritance [Gamma95, p.20]. However, this modus operandi is by no 

means a guarantee for good and durable designs. Experience helps, but careful decisions and meticulous work 

are always required. Therefore, and worst of all, the entire process tends to be error prone, not forgetting 

costly. The larger and more complex the system is, the worse these factors seem to become at an escalating 

rate.  

 

Even the most complex systems are built by using smaller ―parts‖, influencing the overall design directly or 

indirectly. A part can be anything from an entire sub—system to a specific component, native to the language or 

otherwise, that requires the need for a specific design. Such parts may in turn be built using even smaller parts 

and so forth and need to communicate to function as a whole. The key to any viable design is to identify the 

relevant parts, their functionality, and their interaction, but this is not a trivial matter. The OO approach 

attempts to manage the system complexity by abstracting out knowledge and encapsulating it within interacting 

objects [WirfsBrock90, p.5]. Hence, a part can be viewed as a single object (or rather its type) or a collection of 

interacting objects delivering a specific functionality. If we view a part as a design problem to be solved, 

regardless of the approach chosen, it is likely that others have already solved a similar problem in a satisfactory 

manner. If we can utilise this knowledge, the quality of the system may be improved. One approach to identify 



EVALUATING SOFTWARE DESIGN PATTERNS –– INTRODUCTION  MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis  Page 2 of 197 

reoccurring design problems and their well—proven solutions is to use software design patterns. A design pattern 

is an abstraction of practical experience and empirical knowledge, but it is also a description of the problem it 

addresses and a solution to it [Alexander77; Lea93]. While the design pattern provides a canonical solution to 

the described problem, human interaction and interpretation is required to apply the solution in different 

contexts. Software design patterns are commonly associated with, but not limited to, OO environments. 

Patterns are uniquely named and written in a consistent format that allows designers, developers, and others to 

communicate using a common vocabulary. Related patterns are grouped in collections, or ideally languages. 

Design patterns can facilitate the entire design and development process because they express ideas and 

solutions founded in experience traditional methodologies cannot. They communicate architectural ideas in a 

consistent high—level language. 

 

Nevertheless, design patterns must be applied with caution. Design patterns are neither completely static, nor 

completely dynamic in nature. To apply a design pattern, a problem similar to the one addressed by the pattern 

must have been identified in some context. Patterns are not reusable components, but guidelines on how to 

solve a given problem. This is an important fact, but based on our experience, one that is often forgotten in real 

life situations. As with any design discipline, the human factor is important because choices and interpretations 

must be made to adapt the pattern to a given situation. On the other hand, the environment or context may 

dictate behaviour that must be adhered to, and thus cannot be changed. The solution must be implemented for 

each context, perhaps differently and perhaps using different programming languages, but a given environment 

may also present standard implementations of a given pattern for easy reuse, depending on the pattern 

complexity. Patterns can be misunderstood, misused, not used at all, or convey incorrect information at the 

time of writing and/or at the time of application. While design patterns can lead to sound designs, they cannot 

offer any guarantees [Vlissides97, i.5]. The true benefit is only realised if a given collection of design patterns is 

used on a regular basis in a specific domain and context. The continued use will motivate a better understanding 

of how the patterns work and possibly evolve in the given context. In a practical sense, design patterns that 

repeatedly have been applied successfully are in our view equivalent to ―teaching‖ or ―Best Practices‖ for the 

domain in question, according to the philosophical approach offered by ―Best Practices‖ based around 

continuous learning and continual improvement (see also [Vlissides97, i.6]). Qua this reasoning, we have used a 

number of design patterns extensively in our OO designs, but have experienced that regular practical usage in a 

given context is closely tied to the programming language used to implement a given pattern.  

 

The motivation for this project is to gain a better understanding on how to use design patterns from a practical 

point of view in OO environments, specifically how the use of language features can influence the pattern 

application. To make this concrete, we investigate the ―Gang of Four‖ design patterns using Java 6 as the 

programming language. In our view, ―design patterns‖ as a concept is indeed a helpful tool. However, the choice 

is not whether or not to use ―design patterns‖ in the design process, but which concrete patterns to use, if any. 

Design patterns as a practical tool are meaningless unless specific design patterns are known, because otherwise 

the knowledge cannot be utilised. A pattern can describe anything, but only specific patterns can solve a given 

problem. By virtue of our job, we wish to evaluate the ―Gang of Four‖ patterns because we have used several of 

them extensively, but critically, in the design and development of large and quite complex Internet 
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applications. The ―Gang of Four‖ patterns are a collection of twenty—three design patterns described in the 

―Design Patterns‖ book [Gamma95]; by April 2005, the book was in its 32nd printing! The ―Gang of Four‖ patterns 

describe communicating objects and classes that are customised to solve a general design problem in a 

particular context [Gamma95, p.3] in OO environments. The experience gained while working with these 

patterns over the years has shown us that they can be a valuable aid in shaping the design of successful 

applications, but we have also noted several issues that warrant a closer look. The ―Gang of Four‖ patterns are 

well over a decade old, and seem to be targeted primarily for C++ [Stroustrup91] environments with rather 

dense and stringent descriptions on how to implement them. We have used them in different environments, 

using languages supporting other, or missing, features compared to those addressed in the pattern descriptions. 

We have also experienced problematic issues, such as concurrency related issues; for example, how thread—safe 

initialisation in the Singleton [Gamma95, p.127] pattern is ensured. Many of these issues are practical in nature, 

and seem related to how design patterns and a given programming language interact. Continuing with the 

Singleton example, Java has built—in support for synchronisation, which could solve the initialisation problem, 

but there are also other ways to solve the problem in Java. Unfortunately, because of time and money, real—life 

projects seldom allow in—depth investigations on such issues. The aim of this project is to remedy this by 

offering a subjective, but comprehensive, evaluation of the ―Gang of Four‖ patterns implemented in Java 6. The 

result of the evaluation will give us a better understanding on how the practical use of certain language features 

may affect the evaluated design patterns. This is relevant as the ―Gang of Four‖ patterns are frequently used in 

real—life systems, and so is Java, but Java 6 furthermore offers a range of versatile features that will be 

interesting to apply in the pattern implementations. As the evaluation centres on features found in Java 6, most 

observations will be relevant for Java only. It may be possible that some can be generalised to similar languages. 

1.2. Goals 
The primary objective of this Master‘s Thesis is for the undersigned to obtain a Master‘s Degree in Computer 

Science from the University of Copenhagen, Denmark.  

 

This thesis represents a project with a formal workload of 30 ECTS. The purpose of the project is to evaluate 

practical application of the ―Gang of Four‖ design patterns using Java 6 and present the findings in this thesis. 

The premise is to investigate how the use of Java 6 features may affect pattern application. By doing so, we 

hope to gain valuable experience that will enable us to understand and use design patterns better in ―real—life 

situations‖, not just when applied in Java, but also in situations where the choice of programming language has 

already been made. The work includes theoretical and practical aspects.  

 

The primary objective is achieved, if the project is approved based on this thesis. To fulfil the purpose of the 

project, we define the following sub—goals to be addressed in the project and in this thesis:  

 

I. Theory and Background –– Present an introduction to and a discussion about the theory deemed 

necessary to understand topics covered by the evaluation. This will include OO; patterns in general with 

focus on software design patterns, especially the ―Gang of Four‖ design patterns; clarification on how 
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concepts and themes described by Gamma et al. relate to Java 6; and a discussion on related work and 

topics.  

II. Evaluation Approach –– Define a simple, but reasonably structured approach on how to perform an 

evaluation of the ―Gang of Four‖ patterns, where the choice of language will act as a catalyst for the 

evaluation. The approach must describe the overall evaluation set—up; how to focus the evaluation; 

and how to describe the specific criteria used to perform the various investigations. As the evaluation is 

subjective, this will enable others to judge the premise, execution, and result of the evaluation as well 

as perform a similar evaluation using a different language catalyst. 

III. Implementation –– Within the realm of the defined approach, implement and evaluate the ―Gang of 

Four‖ design patterns using Java 6.  

IV. Evaluation –– Present the evaluation outcome and comment on the findings separately for each 

evaluated pattern and by juxtaposing the individual evaluations. 

 

A secondary objective is the intention that this thesis can aid others, especially colleagues at work and like—

minded, to reflect about software design patterns in general, but in particular in relation to the ―Gang of Four‖ 

patterns implemented in Java 6. Whether or not this objective is achieved will not be evaluated, but this thesis 

and the implementations will be made publicly available for those interested. 

1.2.1. Demarcations 

This thesis will not cover: 

 

 An evaluation on the validity of the abstractions the ―Gang of Four‖ patterns describe. It is assumed 

that the patterns represent usable solutions to the problems they address, and the evaluation 

investigates only issues related to practical pattern application in Java 6. The pattern abstractions will 

only be commented during the investigations if deemed necessary. 

 An in—depth description of Java 6 and its features, as the reader is assumed familiar with Java. 

 The theory behind the construction of programming languages, specifically Java. While it is necessary 

to be familiar with language features in order to utilise them in pattern application, it is not necessary 

to know how these features are implemented in the language itself. For example, we do not care how 

Java‘s garbage collector or type system is implemented internally, only about the features they offer to 

the user and implementer of the design patterns. Relevant features are only described and discussed 

from a practical point of view.  

 An in—depth analysis of Christopher Alexander‘s work on patterns and pattern languages within the 

field of architecture. In computer science, the ―Gang of Four‖ patterns build on these concepts, as do 

others, but we only present a quick introduction, primarily based on [Appleton00; Lea93]. 
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1.3. Thesis Summary 
In this thesis, we present a subjective evaluation of the ―Gang of Four‖ design patterns implemented in Java 6. 

The evaluation centres on how the use of specific language features may affect the pattern application. To 

make a reasonably structured evaluation across the different patterns using a given language as the catalyst, we 

address issues related to the implementation described by Gamma et al. in the Implementation and Sample 

Code elements in the ―Gang of Four‖ pattern descriptions. If possible, we provide an example on how equivalent 

functionality can be implemented in Java 6, or explain why it cannot. We summarise our findings, and identify 

traits common to several patterns. Additionally, we present a thorough introduction to the background theory 

required to understand the ―Gang of Four‖ patterns and the concepts they build on, such as OO development 

and pattern theory. We also discuss several articles related to application of the ―Gang of Four‖ patterns in 

various different languages, both dynamic and static languages, and where deemed relevant compare the results 

to the outcome of this evaluation.  

 

This thesis is divided into two parts, excluding the introduction and overall conclusion. The first part presents 

theory and background (chapters 2 – 4). The second part concerns the implementation and practical evaluation 

(chapters 5 – 9). In principle, each part can be read independently, but part one provides a solid foundation on 

related topics before the evaluation is undertaken in part two. Most of the theory presented in this thesis can be 

found in numerous other places in the literature as well, but we apply a practical viewpoint that focuses on the 

―Gang of Four‖ patterns and Java 6. By including, discussing, and focusing on various aspects of it here, we 

maintain an important perspective on points relevant to the evaluation. 

1.3.1. Part One — Theory and Background 

This part begins with an introduction to OO development. Focus is on how design patterns, particularly the 

―Gang of Four‖ patterns and the concepts they express, can aid the process and how they relate to Java 6. 

Pattern theory and the relation to software patterns are described and selected studies on related work are 

examined. 

 

Chapter 2 –– The ―Gang of Four‖ patterns are design patterns targeting design problems related to OO. To 

understand the inner workings of the ―Gang of Four‖ patterns, the OO methodology forming their foundation 

must be understood. Its importance is emphasized by Gamma et al. as the entire first chapter in [Gamma95] is 

dedicated to the OO concepts and themes that form the basis of the design patterns presented. Hence, chapter 

2 gives an introductory, but focused, presentation to these issues, but goes even further and connects concepts, 

themes, Java 6, and usage of design patterns in the overall development life—cycle of OO systems. As explained 

in section 2.1, there is no formal consensus on the concepts that describe fundamental OO behaviour, but the 

themes and concepts described by Gamma et al. seem to be commonly accepted. This is illustrated by 

juxtaposing the concepts against a recent survey by Armstrong [Armstrong06] that investigates 239 texts on OO 

theory to try to identify the fundamental concepts inherent to OO. Because of this wide acceptance and 

considering how ubiquitous applicable the abstractions described in ―Gang of Four‖ patterns have proven to be, 
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the choice of OO method to guide the development process becomes less important. In many respects, as 

reasoned in section 2.2, we see design patterns as orthogonal to OO methods, because the objects and 

knowledge they represent are independent of which method produced the (initial) context to which a pattern 

can be applied. Regardless of the OO method used, the software lifecycle normally includes phases such as OO 

analysis (OOA), OO design (OOD), and OO programming (OOP), or implementation, perhaps re—iterated as 

needed as the design evolves. Section 2.4 explains that the analysis phase determines what is to be built, often 

in form of a conceptual model, and the design phase how it should be built, as pointed out in section 2.5. Design 

patterns are primarily used during the design phase, often modelled using UML as described in section 2.3, but 

also in the implementation phase as the patterns must be adapted to and implemented in the chosen language. 

As rationalised in section 2.6, the design and implementation phases are where the choice of language really 

becomes important, because it determines how the design is executed; what is possible, what is not, and 

ultimately how well the implementation reflects the desired concepts and themes.  

 

Chapter 3 –– Chapter 3 presents general pattern theory based on the ideas set forth by Christopher Alexander 

within the field of architecture, but also relates the theory to software design patterns, and in particular to the 

―Gang of Four‖ patterns. The ―Gang of Four‖ design patterns are ―just‖ one collection of software design 

patterns, and in order to understand software design patterns as a concept, at least the basic principles of 

Christopher Alexander‘s work on patterns and pattern languages must be known. This is necessary because 

software design patterns in general build on the basic ideas set forth by Alexander, in particular the ―Gang of 

Four‖ patterns evaluated here [Gamma95, p.2]. Simplified greatly, a pattern is an abstraction of practical 

experience and basic knowledge on how to solve a given problem, described in a consistent format so it can be 

adapted for reuse in similar contexts. Section 3.1 contains an introduction to Alexander‘s work, describing the 

history and theory behind patterns and pattern languages; the information is mainly based on [Appleton00] and 

[Lea93], subsidiary on [Alexander77]. Many of Alexander‘s ideas are admittedly abstract, but computer science 

was not only reasonably quick to adapt several of his ideas, but also to introduce original pattern related 

concepts as explained in section 3.2. According to Alexander, a pattern must ideally possess certain properties 

to ensure the quality of the pattern and thus the quality of the (reusable) solution it generates, for example 

Abstraction, Composibility, and Encapsulation. Many of these properties have similar meaning to desirable 

constructs in OO, which could explain why software patterns first became popular within this domain. A class, 

for example, is an abstraction with encapsulated responsibilities that can be used as a component by other 

classes. Pattern qualities are explained in section 3.3, but a pattern must furthermore balance opposing forces, 

or constraints, within its context to reach a balance that implicitly will be present in the pattern and its 

application [Appleton00]. This implies, as elaborated in section 3.4, that a pattern may represent trade—offs 

between various forces, for example flexibility versus speed of an OO application. For a pattern to be useful, it 

must concisely communicate both the problem it tries to solve and the solution to it, including expressing the 

desired qualities and account for the forces at play. It does this by partitioning the description in various 

descriptive elements, such as Name, Intent, Consequences, Implementation, Sample Code, etc., but this is no 

trivial matter as the notion of patterns can be applied in various contexts. Section 3.5 describes common 

pattern formats used to describe patterns; in particularly the format used to describe the ―Gang of Four‖ design 

patterns, where C++ and Smalltalk are used to illustrate key pattern points. This format is used extensively in 
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the evaluation, in particular the Implementation and Sample Code elements as they pertain to the 

implementation and evaluation. Still, the lack of a formalised concept of a design pattern has long been a 

vigorously debated issue within the pattern community. It goes to the very core of understanding, or agreeing 

on, what software design patterns are. This is discussed in section 3.6. Formalism is closely related to tool 

support for pattern mining, understanding, and application, and can therefore aid the implementation, but also 

limit the degree of freedom inherent in pattern descriptions. Section 3.7 describes how patterns can be grouped 

in collections, or ideally languages, where individual patterns may be interrelated in various cooperative ways. 

All twenty—three ―Gang of Four‖ patterns are finally presented, including an illustration of how they may 

intricately connect and cooperate in numerous ways. The Gamma at el. classification scheme is also presented, 

which classifies patterns according to scope (Class, Object) and purpose (Creational, Structural, Behavioural). 

Section 3.8 describes how patterns can evolve, from discovery to ordinary usage to possibly becoming part of 

the language itself. Pattern collections may also evolve over time. Finally, section 3.9 discusses the practical 

application of patterns. 

 

Chapter 4 –– The final chapter in the first part of this thesis is chapter 4, which discuss selected studies on 

related work. All revolve around the ―Gang of Four‖ pattern application in a given language. Compared to 

chapter 2 and 3, the chapter is much more technical and practical. It is discussed how specific languages via 

their paradigms and features affect individual ―Gang of Four‖ patterns. As explained in section 4.1, different 

languages have different support for various pattern abstractions. According to Norvig [Norvig96, p.7], patterns 

can be classified based on their (language) implementation level as Invisible, Informal, or Formal, where only 

the latter corresponds to pattern application as described by Alexander, i.e. anew from ―scratch‖ for each 

context. The former two rely on built—in language support and/or components, respectively. The level of 

support can greatly influence the pattern application in the given language, and Java is no different. Several 

dynamic and primarily functional languages have been shown to provide simpler pattern implementations 

compared to the canonical ―Gang of Four‖ implementations. Articles describing three such language studies are 

examined in section 4.2, concerning Common Lisp, Dylan, and Scheme. The primary conclusion drawn from 

these studies is that dynamic features such as reflection, first—class types, multiple—dispatch, and higher—order 

functions have a positive impact on nearly all of the ―Gang of Four‖ patterns [Norvig96, p.10; Sullivan02a, p.43]. 

This is interesting because even though Java is neither functional, nor dynamic, it supports reflection, closures, 

generics, and dynamic proxies, which possibly could be used to achieve similar implementations. As section 4.3 

reveals, the ―Gang of Four‖ patterns have been applied in several earlier Java versions, at least, but we have 

not found similar studies of all ―Gang of Four‖ patterns in Java 5 or 6. Studies of AspectJ and Eiffel 

implementations are also discussed in section 4.3. AspectJ uses Aspect Oriented Programming (AOP) features to 

allow Java to exhibit very dynamic features, such as open classes and support for method combination (advice). 

Utilising such features, the study claims that seventeen of the twenty—three implementations exhibit modularity 

improvements in terms of better code locality, reusability, composibility, and (un)pluggability [Hannemann02, 

p.1]. This is interesting, because Java by itself can simulate many of the features found in AspectJ, though 

requiring some work. The Eiffel studies are similar in that many of the features can also be found or simulated in 

Java 6, but also because of the success rate in fully or partly componentizing two—thirds of the ―Gang of Four‖ 

patterns [Meyer06, p.3]. Interesting. Section 4.4 provides a comparison of the features examined in the 
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aforementioned studies, comparing them to features found in Java 6 that can be used in the practical 

evaluation. It also tries to identify common traits of individual patterns as well as per pattern classification, e.g. 

scope (Class, Object) and purpose (Creational, Structural, Behavioural).  

1.3.2. Part Two — Evaluation 

The second part concerns the practical evaluation, which consists of individual pattern implementations as well 

as a comparative evaluation of all implementations and features used, to identify common traits and issues.  

 

Chapter 5 –– Chapter 5 defines a simple evaluation approach that can be used to investigate how well a given 

language expresses all pattern functionality described in the ―Gang of Four‖ Implementation and Sample Code 

elements, and then applies it to define the evaluation goals used in this thesis. For others to judge the 

evaluation, its premise must be known. As described in section 5.1, the focus is practical and experimental as 

these elements focus implementation and language issues. Next, the evaluation approach is defined in section 

5.2. It requires a detailed and a comparative evaluation. The detailed evaluation concerns the actual pattern 

implementation and participant usage, and describes the pattern implementations using familiar ―Gang of Four‖ 

pattern elements, albeit in more detail. The comparative evaluation juxtaposes the individual observations and 

feature usage to identify common traits and issues. Section 5.3 uses the defined approach to establish the 

evaluation goals. The overall goal is to provide a realistic, but subjective, evaluation that may help understand 

how the ―Gang of Four‖ patterns and Java 6 can cooperate. The focus is practical and technical, from the 

perspective of a practising designer and/or developer. Three broad categories of Java 6 features are examined: 

core language features (types, generics, closures, etc.), reflection (class literals, dynamic proxies, annotations, 

etc.), and special language mechanisms (synchronisation, serialization, cloning, etc.). The comparative 

evaluation will also analyse ―Gang of Four‖ pattern relationships described by Gamma et al. compared to those 

actually expressed in the implementations. It also classifies the level of support individual patterns have in Java 

6 within the realm of the evaluation performed.  

 

Chapter 6 –– Chapter 6 is dedicated to the practical aspects related to the implementation in Java 6. Section 

6.1 outlines the technical set—up, such as the exact Java version and IDE used. Eclipse 3.3 is the primary IDE, 

but Sun‘s NetBeans 5.5.1 is used for comparison. Eclipse uses its own compiler implementation, whereas 

NetBeans uses the official compiler. No plug—ins of any kind are required to run the evaluation code or tests. All 

individual pattern implementations operate, directly or indirectly, on a set of model classes to imitate a larger 

―application‖ compared to what could be achieved by isolated pattern implementations alone. Individual 

implementations or parts thereof can thus more easily be used in other pattern implementations, expressing 

many of the pattern relationships described by Gamma et al. Section 6.2 explains how the implementations are 

modelled using UML Class diagrams. The diagrams are a big part of the detailed evaluation because they 

meticulously illustrate pattern participants, including attributes and operations. In section 6.3, the basic design 

for the overall evaluation is described, also illustrated in UML. Next, section 6.4 presents an overview of the 

developed source code, divided into relevant packages for each pattern implementation. Several Meta packages 

containing functionality such as model classes, loggers, reflection and general utilities have also been 

developed. To ensure that others can confirm the pattern behaviour in the implementations provided in this 
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thesis, an absolute minimal ―test framework‖ has been developed as explained in section 6.5. Each pattern 

implementation supplies a test class to illustrate the functionality. This is not a replacement for JUnit testing, 

but merely to report developed class usage via system out or file loggers. Complete source code, JavaDoc, and 

UML Class diagrams are available on the thesis website at http://www.rode.dk/thesis.  

 

Chapter 7 –– The first part of the evaluation is the comparative evaluation in chapter 7. The comparative 

evaluation offers a thorough analysis of which Java 6 features are used to implement which patterns. Section 

7.1 presents all identified pattern  feature mappings in table 7.1, high—lighting the most interesting entries, 

which are also summarised separately in section 9.2. The features investigated are those established in chapter 

5, categorised as core language features, reflection, or special language mechanisms. Each feature has a 

dedicated sub—section that explains its usage across all patterns, identifying possible common traits and 

alternatives, as well as a small conclusion to its usefulness with regards to help expressing ―Gang of Four‖ 

pattern functionality. Numerous program listings are used to illustrate pattern functionality. The evaluation 

shows that the pattern implementations benefit from Java‘s mixture of static and dynamic features. As the last 

thing, section 7.1 presents observations from the pattern implementations on how to translate C++ features into 

Java 6 features relevant to several patterns. Next, section 7.2 compares the pattern relationships expressed in 

the evaluation to the ―Gang of Four‖ described relationships identified in section 3.7. The expressed 

relationships are subjective based on the evaluation design rather than language features, but help illustrate 

how versatile the ―Gang of Four‖ patters are. To conclude the comparative evaluation, section 7.3 classifies the 

patterns according to their implementation level as described by Norvig, explained in section 4.1. 

 

Chapter 8 –– Chapter 8 presents the individual pattern implementations. Section 8.1, 8.2, and 8.3 present the 

evaluations of Creational, Structural, and Behavioural patterns, respectively. Each pattern investigation is 

presented as required by the evaluation approach defined in chapter 5. The detailed evaluation shows that 

practically all pattern functionality described in the Implementation and Sample Code elements of the ―Gang of 

Four‖ design patterns can be implemented or simulated in Java 6, including Meta information not used directly 

in the canonical implementations. The implementations express the concepts described in chapter 2 and 3. 

 

Chapter 9 –– The results of the comparative and detailed evaluations are summarised and presented in chapter 

9. While chapter 7 and 8 provide summaries and conclusions where appropriate, chapter 9 comments on the 

evaluation as a whole, presents high—lights, and puts the evaluation and its results in perspective. Section 9.1 

determines the level of compliance between the implementations and the ―Gang of Four‖ concepts, themes, 

and pattern descriptions. Section 9.2 concludes that Java‘s core language features promote robustness, pattern 

intent, and reusability, and form the base of all the pattern implementations. Combined with reflection and 

annotations, this offers alternative and flexible pattern implementations. Next, section 9.3 presents the high—

lights identified during the evaluation that utilises the Java 6 features in the manner just described. High—lights 

include generic factories in Abstract Factory and Factory Method, guarded types in Memento, annotated 

observers in Observer, dynamic proxies in Proxy and State, and enumerations in Singleton (Singleton—as—

Single—Constant idiom). We end the evaluation conclusions with an evaluation of the defined evaluation 

approach itself in section 9.4. We conclude that the evaluation approach offers a way to investigate and judge 

http://www.rode.dk/thesis


EVALUATING SOFTWARE DESIGN PATTERNS –– INTRODUCTION  MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis  Page 10 of 197 

how well a given language can express the ―Gang of Four‖ functionality expressed in the Implementation and 

Sample Code elements, but we do not draw any conclusions as to whether the language catalyst should be used 

in a given scenario, here Java 6. The evaluation serves as a tool from which experience can be drawn. 

 

Following part two, chapter 10 contains an overall conclusion to this thesis and the work performed. Section 

10.1 explains the perspective in which this thesis and its conclusions must be understood: from a practical and 

experimental point of view, explanatory in nature. The initial goals have all been achieved and the specific 

results and contributions made by this thesis are listed in section 10.2. Primary contributions include the 

detailed evaluation in chapter 8, which shows that practically all pattern functionality described in the 

Implementation and Sample Code elements of the ―Gang of Four‖ patterns can be implemented or simulated in 

Java 6, as well as the pattern and Java 6 functionality high—lights from section 9.2. Before we conclude this 

thesis with a final remark in section 10.4, an outlook on possible future work is provided in section 10.3. 

1.3.3. Work Performed 

The work performed during the project and presented in this thesis has been both theoretical and practical, 

with emphasis on the latter. The amount of hours put into the project has been substantial; the time spent 

reading, writing, experimenting, shouting, and programming is hard to put into words, but has been spent 

nonetheless.  

1.3.3.1. Theoretical 

The theoretical aspect covers the research, books and articles read, not forgetting the summation and discussion 

of the relevant material presented in this thesis. Making clear demarcations proved no easy task because, in our 

view, everybody within the field of computer science seem to have an opinion on software design patterns, 

perhaps because of the apparent lack of a common understanding and formal methodology. Much new material 

had to be covered, understood, and some of it paraphrased for this thesis; and some material that was expected 

could not be found. All this initially came as a bit of surprise; while design patterns are easy to use, ordinary use 

normally does not warrant in—depth scrutiny, research, and evaluation based on scientific theories. As this 

thesis concludes, the use of design patterns is very much a practical discipline. Due to the shift in focus of this 

thesis, much early research and work unfortunately had to be discarded, but this process also caused much 

improved (practical) focus and structure in the thesis. [Rode07a] is the final work description. 

 

The bibliography contains the list of references used in this thesis. Pivotal among them are [Gamma95], [Lea93; 

Lea00], [Appleton00], [PPR], [Buschmann96], and [WirfsBrock90] for the theory and background; [Norvig96], 

[Sullivan02a; Sullivan02b], [Hannemann02], and [Arnout06; Meyer06] for the related work; and [Stroustrup91], 

[Gosling05], and [Bloch01] for the implementation and evaluation. The choice to use the ―Gang of Four‖ 

patterns was made because of experience and their widespread use. The (re—) reading of the [Gamma95] book 

gave us much new insight into the workings of several familiar ―Gang of Four‖ design patterns. The book is very 

dense and covers a lot of information, some of which can easily be missed on casual reading. This is one of the 

reasons why the evaluation investigates all functionality described in the Implementation and Sample Code 

elements, and not just the canonical implementations.  
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1.3.3.2. Practical 

The practical part covers everything related to the evaluation and implementation(s). It took substantial effort 

to figure out how to conduct a meaningful evaluation of design patterns. An evaluation only makes sense if the 

premise for the evaluation can be viewed and judged by others, so they themselves can conduct a similar 

evaluation, or at least judge the outcome in the proper context. Because of the shift in focus, we deemphasised 

a formalised evaluation approach compared to the practical work performed in the evaluation. Unfortunately, 

this was not done until after we had developed a semi—formal approach, which was then completely discarded. 

On the plus side is that this gave the entire project an aura of realism because unlike the ―Gang of Four‖ 

patterns, software projects and systems rarely get things right on the first try. 

 

The choice to use Java 6 was because of personal experience with Java, but also because we know of no other 

study analysing the use of Java 6, or 5 for that matter, as the language to implement the ―Gang of Four‖ 

patterns. Experience is essential in a project like this; the ―tricks of the trade‖ cannot be utilised otherwise and 

implementations may become trivial. The overall implementation has produced over 300 Java source files, 

yielding 400+ compiled class files (including enumerations and inner classes). The design, implementation, test, 

and documentation took longer than expected, as always. We feel it is important to establish that the pattern 

implementations are not trivial shells unless explicitly warranted by the design, but realistic and sometimes 

quite complex. Because of the scale of the implementations, the evaluations also took quite some time. In 

reality, the theoretical and practical work performed exceeds 30 ECTS, though in part because of the shift in 

focus. This indicates that the thesis scope is perhaps too wide and/or too ambitious, but done is done.  
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2. Object—Oriented Development 
 

The object—oriented model makes it easy 

 to build up programs by accretion.  

What this often means, in practice, is that  

it provides a structured way to write spaghetti code.  

–– Paul Graham 

 

In a room full of top software designers,  

if any two of them agree, that is a majority.  

–– Bill Curtis 

 

Object—Oriented (OO) development is entirely possible without the use of OO design patterns, but if OO design 

patterns are used, they must be applied within the realm of OO development. This chapter gives a short 

presentation to OO development and to the process of designing OO systems with focus on how OO and design 

patterns interact, especially in a Java context. The ―Gang of Four‖ design patterns we evaluate in this thesis can 

be used as a tool to aid the design of OO systems, regardless of the Object—Oriented Method (OOM) used. The 

patterns represent solutions to problems related to the design of OO systems, but at the same time express this 

knowledge using OO concepts and principles. Hence, the general OO concepts must be understood in order to 

understand the design patterns and to perform the evaluation in a consistent manner, including understanding 

the approach utilised by Gamma et al. in the ―Gang of Four‖ design patterns themselves. We also link the 

themes and concepts described by Gamma et al. to Java. To understand how and when design patterns can be 

utilised when designing OO systems, we present abridgements on Object—Oriented Analysis (OOA), Object—

Oriented Design, and Object—Oriented Programming (OOP) as well.  

 

The Object—Oriented (OO) approach to software design attempts to manage the complexity inherent in real—

world problems by abstracting out knowledge and encapsulating it within objects [WirfsBrock90, p.5]. 

Identifying the proper objects, relationships, and interactions are the key objectives to any successful OO 

design, but this is no trivial matter. The granularity of the design is thus a (complex) object, but an object may 

also represent an interaction with a complete sub—structure, for example a reusable component or a software 

design pattern such as a ―Gang of Four‖ pattern. Numerous OO methods have been developed, each offering 

more or less proprietary procedures on how to approach the design and development in order to fulfil these 

objectives, but no common standard exists. Up until deployment, and regardless of the method used, the OO 

development life—cycle generally consists of analysis, design, implementation, and testing phases in some form. 

The phases may be overlapping or re—iterated, each time refining the design and implementation. This is 

dictated by the OO method and procedures used or more likely by (ever) changing demands and specifications. 

Compared to other forms of software development the design phase is considerable larger, because OO systems 

are designed for easy reuse, maintenance, and modification [WirfsBrock90, p.9].  

 

As the design phase is so central to OO development, it is paramount that the design is sound and durable. While 

the OO method may guide the design process, it cannot offer the specific knowledge represented by a pattern. 

Patterns known by the designer can be used as a tool in the design process because they offer proven solutions 

to common problems, which ideally heighten the quality of the design. Part of the pattern knowledge is 
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describing the objects and their relationships relevant for the given scenario, thereby making the job of the 

designer a little easier. As a benefit, the application of well—known patterns will probably make the design 

seem more familiar to other designers as well. Figure 2.1 illustrates the OO software development life—cycle 

commonly used excluding phases such as deployment and evaluation and the relation to patterns.  

 
 

Figure 2.1 — OO development life—cycle and patterns (modified from [WirfsBrock90, f.1—2]) 

Design

Implementation

Testing
Analysis

Design patterns

Idioms

Analysis patterns

Architectural 

patterns

 

The OO software development life—cycle traditionally 
consists of an analysis, design, implementation, and 
testing phase, which may be overlapping or re—iterated 
as dictated by the OO method used, each time refining 
the design and implementation. 
 
Different categories of patterns are used in different 
phases of the life—cycle. Architectural patterns have 
large design granularity and are used early in the design 
phase. Analysis patterns target the domain. Design 
patterns have medium granularity and can be used 
throughout the entire design phase, but are also closely 
related to the implementation. Idioms have the smallest 
granularity and are connected with a specific language. 

 

 

Different categories of patterns are used at different times in the development process, but their usage can 

overlap as illustrated in figure 2.1 above. As explained in section 2.5.1, design patterns are patterns targeting 

design problems with medium granularity, used to refine the sub—systems or components of an OO system, or 

the relationships between them [Buschmann96, p.13]. The ―Gang of Four‖ patterns are classified as design 

patterns, which is thus the category of patterns this thesis investigates. From a practical point of view, design 

patterns are also closely related to the implementation because their descriptions contain source code and must 

in any case be implemented. Any type of pattern used in OO development inherently reflects OO concepts such 

as objects, classes, inheritance, encapsulation, polymorphism, etc. To understand such patterns these concepts 

need to be understood as well. Hence, the next section presents an introduction to OO concepts as understood 

in this thesis before we describe the processes pertaining to OO development and the relation to patterns.  

2.1. Object—Oriented Concepts 
The general lack of consensus regarding fundamental OO concepts is clearly illustrated by a recent survey of 

existing literature related to OO development performed by Armstrong [Armstrong06]. Two hundred and thirty 

nine articles, books, and conference proceedings related to OO development were examined by Armstrong to try 

to identify the essential elements of OO development. Thirty—nine concepts were identified, but only eight of 

these were utilised by the majority of the sources reviewed [Armstrong06, p.124]. Armstrong argues that the 

lack of consensus may be because we do not yet thoroughly understand the fundamental concepts that define 

the OO approach. Many authors suggest concepts that define OO, taking for granted that the concepts are 

known, or that no universal concepts exist; others acknowledge the need for a consensus [Armstrong06, p.123]. 

Few works offer methods of precise specification for OO design, and none are commonly recognised as 

standards.  

 

Armstrong defines a two—construct taxonomy containing the eight fundamental concepts identified, also known 
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as quarks [Armstrong06, t.3]. The taxonomy is reproduced in table 2.1 below. 

 

 

Table 2.1 — Armstrong‘s two—construct OO taxonomy (modified from [Armstrong06, t.3]) 
 

Construct 
 

Description 
 

Structural Construct 

Abstraction Creating classes to simplify aspects of reality using distinctions inherent to the problem. 

Class A description of the organisation and actions shared by one or more similar objects. 

Encapsulation Designing classes and objects to restrict access to the data and behaviour by defining a 
limited set of messages that an object can receive. 

Inheritance The data and behaviour of one class is included in or used as the basis for another class. 

Object An individual, identifiable item, either real or abstract, which contains data about itself 
and the descriptions of its manipulations of the data. 

 

Behavioural Construct 

Message A way to access, set, or manipulate information about an object. 

Message Passing An object sends data to another object or asks another object to invoke a method. 

Polymorphism Different classes may respond to the same message and each implement it appropriately. 

 

By using an OO perspective to classify the individual concepts, they are placed in one of two constructs, namely 

the Structural or Behavioural construct. Armstrong describes Structural concepts as focused on the relationship 

between classes and objects, as well as the mechanisms that support the class/object structure. A class is an 

abstraction of an object. The class/object encapsulates data and behaviour and inheritance allows the 

encapsulated data and behaviour of one class to be based on an existing class [Armstrong06, p.127]. On the 

other hand, Behavioural concepts are focused on object actions. Armstrong describes message passing as the 

process in which an object sends information to another object, or asks the other object to invoke a method. 

Last, polymorphism enacts behaviour by allowing different objects to respond to the same message differently 

[Armstrong06, p.127]. Behaviour and structure are interconnected in the sense that behaviour is a way of 

manipulating structure, but behaviour must also support the actions of the system. The OO perspective used in 

the taxonomy to identify concepts as either Structural or Behavioural matches very well with the ―Gang of Four‖ 

classification concerning pattern purpose, namely Structural, Behavioural, or Creational as described in section 

3.7.1 on page 44. It also matches quite well with the types of UML diagrams targeting Structural and 

Behavioural conduct as described in section 2.3.  

 

In order to perform a meaningful evaluation of the ―Gang of Four‖ design patterns, the general concepts and 

themes inherently expressed by the design patterns must be understood. The pattern authors understanding of 

OO concepts will naturally be reflected in the pattern descriptions, but pattern users may have a different 

understanding as Armstrong‘s survey explains. We must therefore establish the basic concepts and themes 

reflected in the ―Gang of Four‖ patterns. Luckily, this is not as difficult as it sounds. Several concepts related to 

OO development in class—based languages are summarised in chapter one of the ―Design Patterns‖ book 

[Gamma95, p.11-28]. Obviously, this thesis adapts the concepts and themes described by Gamma et al., 

especially because Java is a class—based language like C++ and Smalltalk. Not doing so would be a topic for a 
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different thesis altogether, for example an evaluation targeting prototyped—based languages, where OO 

concepts such as classes and inheritance has no or at least a different meaning. 

2.1.1. Concepts 

The OO concepts described in chapter one of the ―Design Patterns‖ book [Gamma95, p.11-28] are explained in 

relation to the languages used, i.e. C++ and Smalltalk, as well as the problems the ―Gang of Four‖ patterns are 

designed to solve. For example, the concept of mixin classes seems only relevant in a language like C++ that 

allows multiple functional inheritance (as opposed to mixin types, in Java in form of interface implementation 

that requires composition). The delegation and acquaintance concepts directly refers to one of the general 

―Gang of Four‖ design principles as described in the next section. The number of concepts is around forty in 

total of varying granularity, though many of them have fine granularity. Thirty—eight is the number of bold—

faced words, i.e. concepts, with associated explanations on pages 11-28 in [Gamma95]. Some have identical 

meanings, though, for instance request and message. In addition, a few concepts are introduced as part of a 

figure or section heading, for example application. Table 2.2 lists the identified concepts in alphabetical order. 

Because the concepts are described in relation to C++, the table also supplies comments related to Java. 

 
 

Table 2.2 — ―Gang of Four‖ concepts 
 

Concept 
 

Description 

 

Java 6 Remarks 

Abstract class A class whose main purpose is to define a common 
interface for its sub—classes [Gamma95, p.15]. 

Supported.  

Abstract 
operation 

The methods an abstract class declares but does 
not implement [Gamma95, p.15]. 

Supported. Abstract methods can only be 
declared in abstract classes. Interfaces also 
declare methods with no corresponding 
implementation. 

Acquaintance An object uses another object in a loosely coupled 
fashion [Gamma95, p.22]. 

Composition, supported. 

Aggregatee The object owned by the aggregator [Gamma95, 
p.23]. 

Composition, supported. Also called 
Aggregate Member. 

Aggregation An object owns or is responsible for another object 
[Gamma95, p.22]. 

Composition, supported. 

Aggregator The object owning the aggregatee [Gamma95, 
p.23]. 

Composition, supported. 

Application Type of program where internal reuse is important 
[Gamma95, p.25]. 

 

Black—box 
reuse 

Reuse by object composition [Gamma95, p.19].  

Class An object‘s implementation is defined by its class 
[Gamma95, p.14]. 

Supported since Java is a class—based 
language. Java also provides access to an 
object‘s class at runtime. 

Class 
inheritance 

Defining new classes in terms of existing classes for 
code and representation sharing [Gamma95, 
p.15,17]. 

Java supports single inheritance only, but a 
class can implement several interfaces. 

Client The object that issues a request [Gamma95, p.11].  

Concrete class A class that is not abstract [Gamma95, p.15]. Supported. 
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Table 2.2 — ―Gang of Four‖ concepts 
 

Concept 
 

Description 

 

Java 6 Remarks 

Delegate The object being forwarded a message in 
delegation is called a delegate [Gamma95, p.20]. 

Another form of composition, supported. 

Delegation Using object composition, an object receiving a 
message forwards the message to its delegate 
passing itself along as an argument [Gamma95, 
p.20]. 

Supported. Delegation implies composition, 
but composition does not imply delegation 
as aggregation and acquaintance could also 
be used. 

Dynamic 
binding 

Runtime association of a message to an object and 
one of its methods [Gamma95, p.14]. 

Supported via polymorphism. The signature 
of the method is determined at compile—
time, but the actual type of the 
(polymorphic) object is determined at 
runtime [Sierra06, p.111].  

Encapsulation The internal state of an object cannot be accessed 
directly, and its representation is invisible from 
outside the object [Gamma95, p.11]. 

Supported, but must be enforced by access 
modifiers.  

Framework A set of cooperating classes that makes up a 
reusable design for a specific class of software 
[Gamma95, p.26]. 

 

Generics Parameterised types as used in certain languages 
[Gamma95, p.21]. 

Supported, including support for bounds 
and wild—card types (not found in C++). 
Type information is not always present at 
runtime (erasure), and generics do not 
allow (static) template specialisation as in 
C++. Corresponds to parameterised types. 

Instance A created object is a unique instance of its class 
[Gamma95, p.15]. 

Supported. Instances can be compared 
based on identity or based on equivalence 
(equals). 

Instance 
variable 

The internal data of an object are represented as 
instance variables [Gamma95, p.15].  

Supported. Can also be accessed via 
reflection. 

Instantiation Objects are created by instantiating a class 
[Gamma95, p.15]. 

Supported. Objects can also be created 
reflectively. 

Interface The set of all signatures for a given object 
[Gamma95, p.13]. 

Interface as a type is supported, but a class 
may also represent the set of all signatures 
of an object. 

Message An object invokes a method when it receives a 
message. Messages are the only way to get an 
object to invoke a method [Gamma95, p.11]. 

Supported. 

Method A typical name used to describe the procedures 
that operate on object data. If encapsulation is 
enforced, methods are the only way to change the 
internal state of an object [Gamma95, p.11]. 

Supported. Can also be accessed and/or 
invoked reflectively. 

Mixin class A class providing an optional interface or 
functionality to other classes, but it is not intended 
to be instantiated and requires multiple 
(functional) inheritance [Gamma95, p.16].  

Mixin classes are not supported, but mixin 
types in form of interfaces that require 
composition are1. Java supports dynamic 
proxies that allow implementation of 
interfaces at runtime (reflection). 

                                                      

 
1
  The java.io.Serializable and java.lang.Cloneable interfaces are each a hybrid between a mixin class and a mixin 

interface. Java has built—in support for both of these special interfaces that cannot be described by standard interface 
semantics, for example default serializable behaviour in form of private inherited methods.   
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Table 2.2 — ―Gang of Four‖ concepts 
 

Concept 
 

Description 

 

Java 6 Remarks 

Object An object packages both data and procedures that 
operate on the data [Gamma95, p.11]. 

Supported. All classes inherit 

java.lang.Object. 

Object 
composition 

An alternative to class inheritance that composes 
(assembles) objects to obtain complex 
functionality [Gamma95, p.18].  

Supported. 

Operation Synonym for method. Supported. 

Override A sub—class may override a method defined in its 
parent class [Gamma95, p.16]. 

Supported unless the method is declared 
final. Java supports covariant return types. 

Parameterised 
type 

A type that is declared without specifying all the 
types it uses until the point of usage [Gamma95, 
p.21]. 

In Java a synonym for generics.  

Parent—class  A parent—class defines data and methods sub—
classes can inherit [Gamma95, p.15]. 

Supported, also called super—class. Java 
provides access to the super—class at 
runtime as well as the actual instance. 

Polymorphism Substitution of objects with similar interfaces at 
runtime using dynamic binding [Gamma95, p.14]. 

Supported. All non—primitive classes are 
polymorphic in Java as they inherit 

java.lang.Object and define their own 
type. See dynamic binding. 

Request Synonym for message.  

Signature The name, parameter, and return type of a method 
[Gamma95, p.13]. 

Supported. Can be accessed reflectively. 

Sub—class A sub—class inherits (all) data and methods from 
its super—class [Gamma95, p.15]. 

Supported, but access modifiers determine 
data and methods inherited. 

Sub—type A type is a sub—type of another type if its 
interface contains the interface of its super—type 
[Gamma95, p.13]. 

Supported. 

Super—type A type is a super—type of another type if its 
interface is included in the interface of a sub—type 
[Gamma95, p.13]. 

Supported. 

Template Parameterised types as used in C++ [Gamma95, 
p.21]. 

Not supported by Java. 

Toolkit A class library [Gamma95, p.26].  

Type A name used to denote a particular interface 
[Gamma95, p.14]. 

Supported, but type is usually used to 
describe the functionality listed under 
Interface. A type is thus a class or 
interface. 

White—box 
reuse 

Reuse by sub—classing [Gamma95, p.19].  

 

Of the eight fundamental concepts identified by Armstrong listed in table 2.1, all but message passing are 

described as a distinct concept in some form by Gamma et al., though some using slightly different names and 

meanings, for example polymorphism and dynamic binding. However, message passing is implicitly part of the 

message (request) and method (operation) ―Gang of Four‖ concepts. This is similar to method invocation not 

being described either. We therefore conclude that the concepts are encompassed by the taxonomy suggested 

by Armstrong. As the ―Design Patterns‖ book predates Armstrong‘s taxonomy, it is possible that the tight 
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resemblance is an indication of how influential and/or how widely used the ―Gang of Four‖ patterns have been – 

and still are. On the other hand, many of the concepts described are well—known OO principles that any 

developer has to know to design and implement durable OO designs. Concepts such as classes, inheritance, 

polymorphism, etc., cannot be ascribed to Gamma et al. 

 

There is only one concept we disagree with the definition of, namely encapsulation. From our perspective, the 

merging of the different meanings of encapsulation and information hiding by Armstrong is flawed, even though 

Gamma et al. do the same [Gamma95, p.11]. Consequently, the Gamma et al. definition of sub—class is faulty as 

well, because information hiding will determine the data and methods to inherit (see Java remark). We consider 

encapsulation and information hiding as two distinct concepts as explained by Rogers [Rogers01]: 

Encapsulation is a language construct that facilitates the bundling of data with the methods 

operating on that data. Information hiding is a design principle that strives to shield client 

classes from the internal workings of a class. Encapsulation facilitates, but does not 

guarantee, information hiding. Smearing the two into one concept prevents a clear 

understanding of either.  

The remarks regarding Java 6 functionality in table 2.2 clearly indicates that the concepts are well—suited for a 

Java environment. Hence, the concepts are adapted to represent our understanding of OO concepts as well, 

keeping the distinction between encapsulation and information in mind.  

2.1.2. Themes 

The first chapter of the ―Design Patterns‖ book also describes a set of reoccurring themes that permeate the 

―Gang of Four‖ approach to OO development and their design patterns [Gamma95, p.11-31]. The concepts listed 

in the previous section facilitate the themes, but these themes must also be understood in order to understand 

the ―Gang of Four‖ design patterns. Two important principles summarise their ideas:  

 

1. Program to an interface, not an implementation [Gamma95, p.18]; and  

2. Favour object composition over class inheritance [Gamma95, p.20]. 

 

Perhaps more than the design patterns themselves, we consider these principles evidence of how significant the 

―Design Patterns‖ book has been in OO development. They cover the concepts listed in table 2.2, and express 

the need for abstraction, loose coupling, and flexibility in OO (re—) designs. By using interfaces, clients remain 

unaware of the specific types (and classes) of objects they use [Gamma95, p.18]. Interfaces are directly 

supported as a concept in Java. Gamma et al. promote indirection as a mean to achieve decoupling, flexibility, 

and reuse, and encapsulation, information hiding, and parameterised types may aid in achieving this as well 

[Gamma95, p.19,22]. They prefer dynamic (e.g. runtime) relationships as opposed to static ones and thus favour 

object composition over implementation inheritance [Gamma95, p.20]. Delegation is the extreme example of 

composition, which can always be used to replace inheritance [Gamma95, p.21]. However, dynamic, highly 

parameterised software is harder to understand than more static software [Gamma95, p.21], which thus may 
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influence the pattern descriptions. The need for re—design may still arise, but by following the two principles 

and utilising relevant design patterns expressing them, the process of re—design becomes easier, because then 

aspects of a system structure may vary independently of other aspects [Gamma95, p.24]. As Java 6 supports the 

concepts from the previous section, these themes can be expressed in Java providing a prudent designer.  

 

Many of the principles and themes described by Gamma et al. are represented by the General Responsibility 

Assignment Software Patterns (GRASP) [Larman04]. Grand provides a Java version of these patterns in [Grand99, 

p.51-87]. These patterns are not design patterns as such. They do not target a specific problem, but provide 

insight into how responsibilities should be assigned to classes to achieve a well—structured design, which is 

easily understood and maintained [Grand99, p.52]. For example, Low Coupling and High Cohesion [Grand99, 

p.53] is closely related to both of the above principles, and Polymorphism [Grand99, p.69] is naturally related to 

concepts such as polymorphism, super—class, sub—class, inheritance, etc. Several of these themes have by some 

been promoted to design patterns. Grand provides Delegation [Grand98, p.53] and Interface [Grand98, p.61] 

patterns, but whether such fundamental concepts are best expressed as design patterns is doubtful in our view.  

2.2. Object—Oriented Methods 
An Object—Oriented Method (OOM) provides a set of techniques for analysing, decomposing, and modularising 

software system architectures [Schmidt, p.4]. The techniques may be applied in different phases of the software 

lifecycle, e.g. in the analysis, design, and implementation phases (see figure 2.1) [Schmidt, p.6]. An OOM can 

for example describe how the requirements found in the analysis can be transformed into a software model 

consisting of objects [SEI]. Despite the widespread use of OO as explained in section 2.1 on page 13, there is not 

only a lack of consensus regarding the formalisation of the relevant concepts and principles inherent in OO, but 

also on how to approach the overall design process. Hence, numerous OO methods have been developed, each 

trying to remedy this, for example Rational Unified Process (RUP) [RUP] or Model—Driven Architecture (MDA) 

[MDA], but none are an accepted industry standard. Different software development processes are used in 

various OO methods, such as the sequential Waterfall model, or the Iterative, Spiral, or Agile development. All 

but the first are based on the idea of repair and evolution and are in some form iterative in nature, while the 

Waterfall model is more static and employs replacement. RUP, for example, uses iterative development. 

2.2.1. Patterns 

The traits of a given OOM and the procedures used will guide the OO development. It is difficult to speculate on 

the impact a given OOM has on the application of design patterns, if any, without in—depth knowledge and 

experience with each method. Vlissides, one of the ―Gang of Four‖ members, argues that patterns do not need 

tools or methodologies to be effective [Vlissides97, i.4]. Based on experience we agree. However, certain 

methodologies directly address the use of patterns or other techniques, such as UML. Responsibility Driven 

Design has no mention of patterns what so ever [WirfsBrock90], while Extreme Programming (XP), for example, 

de—emphasises or even ignores the need for patterns [Fowler04].  

 

Nevertheless, we do not even see XP as incompatible with design patterns. XP is a software engineering 
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methodology developed mainly by Kent Beck and Ward Cunningham, the duo that also introduced software 

design patterns [Beck87] as described in section 3.2. It is typically used in Agile development, and is iterative in 

nature. It advocates the use of Evolutionary Design contra to Planned Design under certain preconditions 

[Fowler04]. Central is the use of several enabling practices, such as testing, refactoring, and continuous 

integration that embodies and encourages certain values, such as simplicity and communication. This allows 

changes to be performed much faster and cheaper, thus reinforcing the enabling practices [Fowler04; PPR]. Due 

to the evolutionary nature of this methodology, it is often believed that Object—Oriented Analysis (OOA), Design 

(OOD), and design patterns are incompatible with XP. Others, such as Fowler, think that patterns are underrated 

within XP, and are in no way contradictory to the paradigms of XP and that program code developed using the 

methodologies can evolve into patterns during refactoring. We agree, and conclude that the enabling practices 

of XP to some extent can be viewed as a form of pattern discovery, or mining (see section 3.8.1). 

 

Designers often feel strongly about their preferred development method, OO or otherwise, sometimes to the 

point of a religious belief. In many respects, we see design patterns as orthogonal to OO methods, because the 

objects and knowledge they represent are independent of which method produced the (initial) context to which 

a pattern can be applied. While design patterns can be grouped in collections, such as pattern systems and 

languages as explained in section 3.7, the effect of this in our experience rarely influences their practical 

application when used in a specific process. Their application is thus largely independent of the OOM used. 

2.3. Unified Modelling Language 
Regardless of OO method and processes used, the Unified Modelling Language (UML) is generally used for object 

modelling and illustration [UML05]. UML is an extensible general—purpose object modelling and specification 

language used to create abstract (design) models illustrated graphically. It is not limited to modelling software, 

but is widely used in various OO methods. The model of the system can be described using a Functional Model 

(user‘s point of view); using an Object Model (structural); and/or using a Dynamic Model (internal behaviour). 

Different models use different types of diagrams, for example a Use Case Diagram for the Functional Model; a 

Class or Object Diagram for the Object Model; and a Sequence Diagram for the Dynamic Model [UML05].  

 

UML can be used in various development phases. Use Case Diagrams can specify demands the analysis must 

adhere to (see also [Cockburn01]). Class and Object Diagrams can be used in the design phase to describe the 

identified classes and objects, and Sequence Diagrams can illustrate the behaviour of classes, objects, and 

methods. As the design evolves, so must the diagrams. UML does not have built—in notations for all features 

found in Java 6, such as annotations, but can be adapted by user—defined extensions.  

2.3.1. Patterns 

Patterns related to OO development commonly use UML models, because the pattern participants (i.e. classes 

and objects) are easily illustrated using the UML models. Graphical illustrations of pattern functionality are a 

requirement to ensure proper quality of the pattern as well as a meaningful description of its functionality as 

explained in section 3.3 and 3.5, respectively. The ―Gang of Four‖ patterns predate UML, but use other forms of 
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closely related types of illustrations. In this thesis, only UML Class diagrams are used. Section 6.2 details the 

usage, but the evaluation produces a Class diagram for each pattern implementation.  

2.4. Object—Oriented Analysis  
As illustrated in figure 2.1, Object—Oriented Analysis (OOA) is the first phase in OO development, excluding 

mundane tasks such as sale, legal affairs, project planning, and management in real corporate environments. A 

typical scenario is that a given client has produced a (far from complete) list of demands identifying the overall 

behaviour of the system that must be built. The demands can be specified in a number of ways, for example as 

Use Cases [Cockburn01, p.1-3]. The analysis is concerned with developing software engineering requirements 

and specifications from these demands, often expressed in form of a conceptual object model, as opposed to 

the traditional data or functional views of systems [Larman04; SEI]. The analysis is a discovery process that 

determines what is to be built, and the design determines how it is done [Schmidt, p.6; SEI; WirfsBrock90, p.5]. 

This is done by identifying the (real—life) abstractions, concepts, responsibilities, and relationships present in 

the system in order to form a conceptual model of the system while adhering to the demands. The practical 

procedures on how to do this as well as how the model is described are typically dictated by the Object—

Oriented Method (OOM) used. 

 

Example 2.1 –– Consider the task of designing a sophisticated notification mechanism able to notify 

subscribers when certain events occur with support for different means of deliveries. Example usage could be in 

Internet applications that must notify users when certain events occur, data driven or otherwise, or as a mean 

to monitor application usage and abnormalities. The demands set forth by the client will (or should) specify the 

overall context and desired functionality. From these, the analysis must identify the relevant concepts and their 

interactions forming the conceptual model of the notification mechanism. The notification mechanism is used as 

a continuous example in the first part of this thesis. This chapter offers a number of examples illustrating how 

different development phases and patterns may influence the development of such a mechanism. 

 

Simplified, the abstractions and concepts could include User, Subscription, Notifiable, Event, Notification, 

Scheduler, Processor, Delivery, Formatter, and Message; a User, for instance, could be an abstraction of a 

logical entity known to the system, such as an identified human or program, while Notifiable is a more abstract 

concept related to functionality rather than a physical entity. To express the relationships, the model could 

specify that a User can have different Subscriptions pertaining to different Notifiable contexts, e.g. 

subscriptions to receive different kinds of notifications. When a certain Event occurs related to a Notifiable 

context, a Notification will be created and scheduled by a Scheduler. Based on the Notification, relevant 

Subscriptions will be identified by the Processor handling the Notification, and Messages will be created and 

formatted by a Formatter as required by the Delivery mechanism preferred by the User. Furthermore, the 

conceptual model must describe the responsibilities related to the core functionality of each concept; for 

example, the type of Delivery must ensure that a proper type of Message is formatted and delivered, or perhaps 

even create it. Once the conceptual model is defined and described, the design phase will determine how the 

model must be utilised from a software perspective, i.e. how it should be transformed into program code ■ 
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2.5. Object—Oriented Design 
Object—Oriented Design (OOD) is the process of defining the software objects and collaborations forming an OO 

model of a software system in order to implement the identified requirements found during the analysis 

[Larman04; SEI; WirfsBrock90, p.10]. The design phase is thus the second phase in OO development and where 

the analysis determines what is to be built, the design is a process of invention and adaptation that determines 

how it is done [Schmidt, p.6; SEI; WirfsBrock90, p.5]. While the conceptual model identified during the analysis 

describes conceptual objects unrelated to software terminologies, the OO model describes the computational 

software objects needed to implement the functionality of the model instead. The mapping between objects is 

rarely or never one—to—one. The system is decomposed into (complex) software objects of relevant granularity, 

some perhaps mapping to existing re—usable components. Detailed descriptions consisting of message protocols 

(―patterns of communication‖), attributes, and methods (―public behaviour‖) at the level of individual objects 

should be specified [WirfsBrock90, p.10,28].  

 

Example 2.2 –– To implement a design for the notification mechanism described in example 2.1 the 

conceptual model must be transformed into a model of collaborating software objects. Model objects such as 

User, Subscription, Notification, Message, Formatter, and Delivery may map directly to similar software objects, 

or types, e.g. to User, Subscription, Notification, Message, Formatter, and Delivery software 

objects, respectively. A software object may be designated as abstract, which will require specific 

implementations for usage as well. For example, the Delivery object could map to a Delivery interface with 

specific implementations such as EmailDelivery, SMSDelivery, and SNMPDelivery, which in turn could 

require abstract Message, Formatter, and Subscription types as well. Coarse or complex model objects 

may require numerous software objects or even libraries to represent the functionality. For example, an object 

doubling as both a Scheduler and Processor must implement a Scheduler and a Processor interface. The UML 

Class diagram below shows such a scenario. 

Conversely, certain model objects may not even require a structural counterpart such as a class/object; this 

could be the case with an Event object, which could be defined as the executing context creating and 

scheduling a Notification object simply using method invocations. On the other hand, some software objects 

may have no direct conceptual counterpart, as for instance a NotificationRelation object expressing a 

specific relationship between a Notification scheduled for later processing using a certain Delivery type.  
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Once the software objects have been identified, their responsibilities and relationships must be established and 

described (―fine design granularity‖). As seen in the UML diagram above, the Scheduler object could have a 

schedule(Notification) method as well as a getScheduledNotifications() method to return the 

Notification objects scheduled by that Scheduler contained in NotificationRelation objects. Similar, 

the Processor could have a process(NotificationRelation) method as well as a 

getProcessedNotifications() method to return relations processed by that Processor. Here, the 

Scheduler and Processor are the same type (and instance), but that is not a requirement. The design will not 

only identify the attributes and methods, but also the overall internal logic of the methods. Finally, depending 

on the demands at hand, the mechanism could be designed as a standalone library used in a large OO systems, 

or as part of the system itself (―large design granularity‖). If designed as a library, it could be used in other 

design scenarios, but this raises the need for a good, durable, and flexible design even more ■  

 

The practical procedures on how to execute the design phase, i.e. how objects and responsibilities are identified 

as well as how the design is presented, are typically described by OOM used combined with personal experience, 

for example using the Responsibility Driven Design process suggested by Wirfs—Brock et al. [WirfsBrock90]. 

However, Fowler states that it can be hard to distinguish between the analysis and design phase in practice 

[Fowler97]. Wirfs—Brock et al. do not even label the initial phase as the analysis phase, but as part of the design 

phase. Nevertheless, the design phase requires the specification of concepts nonexistent in analysis, such as the 

logic of object methods or the types of the attributes of an object or class [SEI], as for example a name 

attribute of the User class identified in example 2.2 having the type java.lang.String. Furthermore, the 

design may seem closely related to the implementation, and in particular OO Programming Languages (OOPL), 

because it will typically be represented by diagrams such as UML Class and Object Diagrams sharing similar 

notions [UML05]. The design does not require an OOPL for implementation, but an OOPL will facilitate the 

implementation considerably, though the variant of the OO paradigm supported by it will also play a role.  

 

The choice of programming language is important already in the design phase. The language may implicitly 

affect the design if it affects the design patterns used. In [Norvig96], Norvig differentiates between three types 

of programming relevant for the design: a) Programming In a language; b) Programming Into a language; and c) 

Programming On a language [Norvig96, p.58]. In case a), the design is constrained by what the language offers. 

In case b), the design is done independently of any language, then implemented using features available in the 

chosen language. In case c), the design and language meet half way. Norvig explains this as programming into 

the language you wish you had; a language built on the actual language chosen. Ideally, patterns represent case 

b). Unfortunately, the choice of programming language may already have been made, for example based on 

client demands, and this may force a given type of design and programming relation. 

2.5.1. Patterns 

In our experience, real—world problems seldom map to software objects representing real—life entities, but 

rather to programmatic abstractions, i.e. objects of varying granularity, of required functionality. As stated, 

identifying the objects, their relationships, and interactions is no trivial matter. This is where software patterns 

come in handy, because they provide solutions to many of the problems faced while designing such objects (or 
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―components‖): a given pattern has already identified a set of objects, relationships, and responsibilities 

required in a given scenario. The knowledge represented by the patterns can be adapted and utilised by the 

designer yielding familiar variants of already well—known scenarios. Chapter 3 provides a thorough introduction 

to pattern theory, not necessarily related to OO. 

 

Patterns can describe solutions to various areas and the pattern concept originated within the field or 

architecture. According to Vlissides, a common misconception is that software patterns are just for OO design 

and implementation, but patterns can be applied in numerous areas [Vlissides97, i.7]. Furthermore, it is 

commonplace that any pattern related to design, software or otherwise, is dubbed design pattern. However, 

according to Lea, within computer science, the term design pattern reflects a categorisation to identify a 

specific range of patterns related to the design of software systems [Lea00, i.3]. In accordance with this, 

Buschmann et al. suggest a pattern taxonomy that categorises patterns pertaining to design as architectural 

patterns, design patterns, or idioms depending on their range of scale or abstraction [Buschmann96, p.12-15]. 

Others, for example Hohmann [Hohmann98], extend the taxonomy to include analysis patterns as described by 

Fowler [Fowler97]. Table 2.3 illustrates the extended and slightly modified taxonomy used in this thesis. 

 
 

Table 2.3 — Pattern taxonomy 
 

Category 
 

Description 

 

Target 

Architectural Patterns An architectural pattern expresses a fundamental structural 
organisation schema for software systems. It provides a set of 
predefined sub—systems, specifies their responsibilities, and 
include rules and guidelines for organising relationships 
between them [Buschmann96, p.12]. 

Entire (sub—) systems, 
applications, and 
frameworks 

Analysis Patterns An analysis pattern reflects the conceptual structures of 
business processes rather than actual software 
implementations [Fowler97, p.XV].  

Domain and Business 
Object Model  

 

Design Patterns 
 

A design pattern provides a scheme for refining the sub—
systems or components of a system, or the relationships 
between them [Buschmann96, p.13]. It does so by describing 
communicating objects and classes that are customised to 
solve a general design problem in a particular context 
[Gamma95, p.3].  

 

Micro—architectures 
within sub—systems or 
components 

Idioms An idiom is as a low—level pattern, specific to a particular 
programming language that describes how to implement 
particular aspects of components or the relationships between 
them using the features of the given language [Buschmann96, 
p.14]. An implementation of a design pattern that is unique to 
the language chosen is also considered an idiom in this thesis. 

Classes, Objects, and 
Methods 

 

Architectural patterns have large design granularity and are thus used early in the design phase. Analysis 

patterns are related to the domain and business object model of the system, if any, while design patterns can be 

used throughout the entire design phase. Though design patterns target sub—systems, they are only used to 

define specific and encapsulated functionality within the systems. Hence, the granularity of analysis patterns if 

often larger than design patterns. Idioms have fine granularity and are closely related to the implementation 

phase. This is illustrated in figure 2.1 on page 13. Design patterns (indicated with the grey row in table 2.3) are 
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the category of patterns evaluated in this thesis, and unless explicitly stated otherwise, the term design pattern 

as used in this thesis indicates this category of software patterns. 

2.5.1.1. Architectural Patterns 

Patterns categorised as architectural express fundamental structural organisation schemas for software systems. 

They have large granularity and their introduction into the early stage of the design phase will greatly influence 

the system, including the detailed design of sub—systems and how different parts collaborate and communicate 

[Buschmann96, p.25-26]. Architectural patterns are still only applicable for a given scenario and do not 

represent a complete software architecture. Hence, several patterns may need to be applied to form the entire 

system. As is the case with design patterns, architectural patterns may be classified according to their overall 

purpose, for example as Adaptable Systems, Interactive Systems, or Distributed Systems [Buschmann96, p.26]. 

Buschmann et al. also suggest a number of patterns, known as the ―POSA‖ patterns, for instance the 

architectural Model—View—Controller Pattern [Buschmann96, p.125], which we have used extensively in the 

design of numerous applications2. 

 

Example 2.3 –– The notification mechanism described in example 2.1 on page 21 can be designed as a 

standalone library, or even framework allowing for customisation in form of an API. It is reasonable to assume 

that Users, Subscriptions, scheduled Notifications, and Messages must be serialised to a perhaps permanent store 

to handle identification of pre—existing users and subscriptions, application shutdown, and re—deliveries. The 

Layers [Buschmann96, p.31] architectural pattern suggest to divide the architecture into layers dedicated to 

different tasks, for example a database layer handling the persistence of the objects and a layer handling the 

application logic. An API can by it self be considered a variant of the Layers pattern [Buschmann96, p.46]. 

Fowler identifies specific variants of the Layers pattern, for example Two—Tier Architecture [Fowler97, p.240] 

corresponding to the scenario in this example ■  

 

While architectural patterns can have tremendous impact on the design of the software system, we for the most 

part see design patterns as autonomous from their application. Of course, a design pattern such as the View 

Handler Pattern [Buschmann96, p.291] is a refinement relevant to the infrastructure offered by the Model—

View—Controller Pattern, and Creational ―Gang of Four‖ design patterns behaviour could be affected if the 

architectural Reflection Pattern is applied [Buschmann96, p.293]. However, the granularity of design patterns 

and their general versatility makes them useful and relevant in many different architectural contexts, for 

example the ―ever—applicable‖ Iterator [Gamma95, p.257] and Decorator [Gamma95, p.175] patterns.  

2.5.1.2. Analysis Patterns 

At the core of many Information Systems (IS) is the business object model that do represent real—world entities, 

for example a mapping of a company to a Company object. The business object model is said to represent the 

domain of the system. Hence, the business object model is often closely related to the conceptual model 

constructed in the analysis phase, but it is often just a relative small part of the entire system. However, the 

                                                      

 
2
  The ―POSA‖ pattern system contains architectural patterns, design patterns, as well as idioms.  
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business object model is a truly pivotal part because it effectively defines the system behaviour: instances of 

model objects are to be manipulated by the system while adhering to the business rules, thus defining the 

overall behaviour. Because a well—designed business model is so important, patterns have even been developed 

targeting the domain specifically. Fowler presents a comprehensive set of analysis patterns targeting reusable 

parts of business object models [Fowler97], some even at a granularity level corresponding to architectural 

patterns as illustrated with the Two—Tier Architecture [Fowler97, p.240] pattern in example 2.3. However, a 

business object model cannot stand by it self, or may not even be utilised in a design. The total functionality 

required to manipulate the business object model, directly or indirectly, will in terms of objects vastly out 

number objects in the model. For example, in Internet applications auxiliary objects are required to handle of 

incoming browser requests, security, logging, persistence of data, errors, rendering, etc. Such objects rarely 

have real—world counterparts. Examples could be a Logger object to log diagnostic messages; a Request 

object to represent input to the application; or in the case of example 2.2, a NotificationRelation object. 

Even if a system does not use a business object model as such, it will always have a core functionality that 

requires many auxiliary objects with additional functionality. Hence, the design of business system is not just 

about designing the business object model, but naturally about designing the entire system. The use of analysis 

patterns does not exclude the need for design patterns.  

2.5.1.3. Design Patterns 

The design pattern categorisation is almost directly based on the ―Gang of Four‖ definition of design patterns. 

The precise definition used in this thesis is shown in table 2.3. The ―Gang of Four‖ patterns [Gamma95] are a 

collection of patterns targeting the domain of design problems closely related to pragmatic problems found in 

general OO designs. Gamma et al. define design patterns as [Gamma95, p.3]:  

Descriptions of communicating objects and classes that are customized to solve a general 

design problem in a particular context. 

Gamma et al. further explain that the domain of design patterns is describing concepts and structures beyond 

individual objects and classes up to the granularity level of refinement of OO sub—systems. Algorithms are not 

considered a pattern by this, or other, definitions; they solve computational problems, not design problems. This 

definition of design patterns is roughly equivalent to the domain of the design pattern categorisation described 

by Buschmann et al. [Buschmann96, p.13], except that Buschmann et al. do not explicitly mention OO. Our 

definition implies an overall OO domain. Borchers [Borchers99, p.2] offers a broader definition that does not 

require class—based languages, or even a specific domain: 

A software design pattern is generally considered to be a proven solution of a recurring 

software engineering problem that balances the competing design constraints optimally for a 

certain type of situation. 

This broader definition implies the choice of pattern has consequences. This is an important aspect of patterns 

as explained in chapter 3. As the ―Gang of Four‖ patterns are evaluated in this thesis, we see no reason not to 

use the ―Gang of Four‖ definition. Hence, design patterns both describe the ―Gang of Four‖ patterns, but also 
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the category of patterns targeting the same domain. Many other commonly used design patterns have been 

published as well, for example the ―POSA‖ patterns3 [Buschmann96]. The problems design patterns address arise 

more frequently than issues purely related to the business object model as targeted by analysis patterns.  

 

Example 2.4 –– In example 2.2 on page 22, we identified the need for an abstract Delivery type with 

concrete implementations representing different means of delivery mechanisms, such as EmailDelivery, 

SMSDelivery, and SNMPDelivery to deliver messages via email, SMS, or the Simple Network Management 

Protocol (SNMP), respectively. The design must ensure that only the proper types of Message objects will be 

delivered using a given delivery mechanism; that the messages will be formatted to a representation suited for 

such a delivery; and that additional means of delivery could fairly easy be added – but how?  

 

A designer familiar with the ―Gang of Four‖ patterns will immediately recognise that the Abstract Factory 

[Gamma95, p.87] and Factory Method [Gamma95, p.107], and perhaps the Singleton [Gamma95, p.127] and 

Template Method [Gamma95, p.325], design patterns could be utilised here. The Abstract Factory pattern can 

be used to ensure that the Delivery and Formatter types used together are to correct ones, making use of 

the Factory Method to defer the actual creation elsewhere, which also allows for easy introduction of new 

Delivery and Formatter types. The Singleton pattern can be used to ensure that the notification mechanism 

creates Delivery and Formatter objects in a uniform way not breaking the loose coupling offered by the 

factory patterns by ensuring that only a single factory is available. Finally, if the notification mechanism is 

designed as a library, the Template Method pattern can be used to define hooks in various objects that the 

client can override to add additional functionality or means of delivery ■  

2.5.1.4. Idioms 

Buschmann et al. describe an idiom as a low—level pattern, specific to a particular programming language that 

describes how to implement particular aspects of components or the relationships between them using the 

features of the given language [Buschmann96, p.14]. The classification is based on the work by Coplien in 

[Coplien91]. We furthermore claim that any design pattern is implemented as an idiom if the specific 

implementation is unique to the language. An example is a Java implementation of the Singleton pattern using 

the synchronized statement to ensure that only a single instance is created. While the implementation can be 

considered a Java idiom, the abstraction is still a design pattern. This indicates a closer relation between design 

patterns and idioms and thus the implementation, which is illustrated in figure 2.1 on page 13. Buschmann et al. 

also note that certain design patterns provide a source for idioms [Buschmann96, p.350].  

2.6. Object—Oriented Programming 
The objects described in the design phase must be transferred into program code. Languages supporting an OO 

paradigm will facilitate this process, for example by directly offering language constructs such as objects, 

                                                      

 
3
  The Command Processor [Buschmann96, p.277] design pattern implemented as part of the Command pattern in section 

8.3.2.3 is in fact a ―POSA‖ pattern. 
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classes, and inheritance. Other types of languages can be used as well, but will require more work during 

implementation. The implementation phase is often called Object—Oriented Programming (OOP), but OOP is 

also commonly used to denote OO in general. This thesis refers to the implementation phase as OOP. More so, 

Sethi describes OOP as a programming paradigm, where execution is normally imperative and data is 

conceptualised in cooperating and communicating objects representing logical entities [Sethi96, p.15-16], i.e. 

closely related to the programming language chosen. Languages supporting an OO paradigm are called OOP 

languages (OOPL).  

 

Example 2.5 –– To implement the design of the notification mechanism described in example 2.2 on page 22 a 

programming language must be chosen. If the design is described using UML Class Diagrams, the conceptual 

model entities are represented by classes. All User objects are thus represented by the User class, Delivery 

objects by a Delivery interface, etc. A class—based language like Java would be the obvious choice to 

transform the design to program code, because the language directly support classes and inheritance as part of 

the syntax. The User type could directly be defined as class User, and a specific Delivery implementation as 

class EmailDelivery implements Delivery, for example. On the other hand, if a prototype—based 

language is chosen as the programming language, the relationship between Delivery and EmailDelivery 

would have to be expressed differently ■  

 

Implementation is not the last phase in the software life—cycle, but the last phase relating to the design. 

Testing, deployment, and evaluation are key phases that might spawn new demands, which in turn may cause 

the development cycle to re—iterate.  

2.6.1. Object—Oriented Programming Language 

Ideally, the relation between the design and implementation should be in form of Programming Into a language 

as described by Norvig [Norvig96, p.58], i.e. the design should be designed independently of any programming 

language (see section 2.5). A programming language that has built—in support for an OOP paradigm is an obvious 

choice to use when the design must be implemented, because such languages directly support the object notions 

of objects, encapsulation, information hiding, polymorphism, and in case of class—based languages classes and 

inheritance [SEI; WirfsBrock90, p.10]. In short, most of the concepts from the concepts presented in section 2.1, 

which Java 6 does. Below, table 2.4 offers a quick comparison of some of the more interesting features found in 

C++, Smalltalk, and Java 6 based on [Gamma95; Gosling05; Stroustrup91]. 

 
 

Table 2.4 — Comparing C++, Smalltalk, and Java 6 
 

Language 
 

Paradigms 
 

Type System 
 

Example Features 
 

Implementation 

C++  Hybrid, Class—based, 
Imperative, Procedural 

Strong, Static  Templates, Multiple Inheritance, 
Overloading, Overloaded Operators 

Static (RTTI), 
Compiled 

Smalltalk Pure, Class—based, 
Imperative, Reflection 

Strong, Dynamic Duck Typing, Inheritance, 
Overloading, Overloaded Operators 

Runtime, 
Bytecode, JIT 

 

Java 6  
 

Hybrid, Class—based, 
Imperative, Reflection, 
Concurrent 

 

Strong, Static  
 

Generics, Inheritance, Interfaces, 
Overloading, Dynamic Proxies, 
Annotations 

 

Runtime, 
Bytecode, JIT 
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Other types of languages can be used as well to implement a design, though not as easily. For example, a class—

based design implemented in a language not supporting classes must utilise, or even invent, means to represent 

classes and inheritance. This corresponds to Programming On a language [Norvig96, p.58]. Programmatic 

features must be introduced to support the requirements of the design. OOP languages will be easier to use in 

conjunction with design patterns as well because design patterns build on the fundamental OO concepts.  

2.6.2. Patterns 

If design patterns were utilised in the design phase, the patterns will supply canonical implementations or at 

least examples on how to implement the required functionality. As Gamma et al. already note, the choice of 

language will affect the pattern application because the language will ultimately decide what can and what 

cannot be done (easily) in light of supported programming paradigms [Gamma95, p.4]. In case of a Programming 

In a language or Programming On a language relation between the design and programming language [Norvig96, 

p.58], design patterns can help establish wanted features. That is, to avoid limitations of the implementation 

language [Norvig96, p.4]. However, the pattern examples must be modified to the language chosen and to the 

scenario at hand, which may raise issues in case the language does not support features utilised in the examples 

or the problems inherent to the scenario. We have already established that Java 6 supports practically all 

concepts from section 2.1.1. Still, the concepts do not describe all specific programmatic features used in the 

examples, such as multiple inheritance in C++ or codeblocks in Smalltalk. The Java 6 implementations must find 

alternative ways to implement the desired functionality.  

 

The patterns used may also reflect part of the author‘s approach to OO development, for example the two 

important principles for OO development defined by Gamma et al. that are listed in section 2.1.2 on page 18: 1) 

program to an interface, not an implementation [Gamma95, p.18]; and 2) favour object composition over class 

inheritance [Gamma95, p.20]. By applying the ―Gang of Four‖ patterns, these principles will be reflected in the 

developed source code. By repeatedly using the ―Gang of Four‖ patterns, these principles may be promoted by 

the developer to core principles that will be applied elsewhere in the design process as well.  

 

The knowledge represented by some design patterns can be implemented as reusable components. The process 

of implementing patterns as reusable components is called ―componentization‖ by Meyer and Arnout [Arnout06]. 

This is discussed in chapter 4. Pattern components make the implementation phase much easier, but also fixate 

the behaviour to the functionality available. Certain design patterns are so universally applicable that 

programming languages offer implementations of them as part of the language or its core libraries. For example, 

it is widely known that Java has built—in support for the Iterator, Observer, and Proxy patterns. The 

java.util.Iterator<E> interface describes the Iterator pattern functionality as understood in Java with 

numerous standard implementations in the Java Collections Framework4. Iterators in Java, for example, are 

defined to fail immediately in case of concurrent modification, thus addressing, but fixating behaviour only 

discussed in [Gamma95, p.261]. Additionally, any class implementing the java.lang.Iterable<T> interface 

                                                      

 
4
 See http://java.sun.com/javase/6/docs/technotes/guides/collections/overview.html.  

http://java.sun.com/javase/6/docs/technotes/guides/collections/overview.html
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must return an iterator, which can be used directly in the for—each loop introduced in Java 5. The 

java.util.Observer interface combined with the java.util.Observable class describes the functionality 

needed to implement the Observer pattern, but is in our experience rarely used. Perhaps because it utilises 

deprecated collection types; that the default implementation is too simple; or because developers prefer unique 

method names to identity different types of events. We do not think it is unreasonable to consider that poor 

implementations may cause developers to become biased towards not using a pattern at all or at least in the 

given language. As a side note concerning the Observer pattern, the Java thread notification model described by 

the wait() and notify() methods in java.lang.Object can be viewed as a variant of it. Finally, the 

java.lang.reflect.Proxy class combined with the java.lang.reflect.InvocationHandler interface 

are an advanced implementation of the Proxy pattern that exploits Java‘s reflection mechanism in a manner 

totally different from the canonical implementation supplied in [Gamma95, p.210-215].  

 

A programming language should be chosen from the device ―the right tool for the right job‖ once the initial 

design has been established. In reality, the choice is often made beforehand. The regular usage of a 

programming language supporting certain design patterns will affect the way the developer thinks of the specific 

design patterns. It may ease the development process, but it may also fixate how the developer perceives 

pattern behaviour. The choice of programming language is therefore important to establish as early as possible.  

2.7. Summary 
By abstracting out knowledge and encapsulating it within objects, the OO approach to software design 

attempts to manage the complexity inherent in real—world problems. Identifying the proper objects, their 

relationships, and collaborations is the key to a successful design of any OO system. 

 

Object—Oriented analysis (OOA), design (OOD), and implementation (OOP) is part of OO development and the 

software lifecycle for OO systems. The analysis develops the software engineering requirements and 

specifications, often expressed in form of conceptual object model. The design must define the software 

objects and collaborations forming an OO model of a software system to implement the identified 

requirements. Compared to other forms of software development, the design phase is larger, emphasising the 

need for good and durable designs even more. The analysis determines what must be built; the design 

determines how it should be done. The implementation must implement the design using a programming 

language. A programming language that has built—in support for an OOP paradigm (OOPL) will be easier to use, 

for example C++ and Java supporting class—based programming, but other languages can be used as well. 

Different OO methods (OOM) can be used to guide the design and development process, offering procedures 

and principles to follow within the realm of OO development. A given method may dictate that the development 

phases may be re—iterated and/or overlapping.  

 

Software patterns can be used as a tool in the design and implementation process regardless of the OOM 

chosen, because we view patterns as orthogonal to the OOM used in many respects. Different pattern 

categories may be utilised in different phases of the design. Architectural patterns have large design 
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granularity and are thus used early in the design phase, while design patterns can be used throughout the 

entire design phase. Analysis patterns are related to the business object model, or domain, of the system. 

Idioms are closely related to the implementation phase. The “Gang of Four” patterns are classified as design 

patterns. Regardless of the OOM chosen, UML is often used to model the design, including pattern 

implementations, visually. The strength of patterns is that they represent well—proven solutions to commonly 

known and re—occurring problems based on empirical knowledge, thus aiding and facilitating the design 

process. Several languages have built—in support for commonly applied patterns, such as the Iterator pattern 

in Java, which makes the implementation and usage easy, but may also fixate pattern behaviour and affect 

the way the developer perceives the patterns in question. This is an indication of patterns and programming 

languages influence each other.  

 

This thesis investigates the “Gang of Four” design patterns described by Gamma et al. As the design patterns 

build upon OO, the fundamental OO concepts must be understood. We adapt OO concepts identified by Gamma 

et al. because they are inherent to the pattern application and very well suited for Java environments.  
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3. Patterns 
 

A pattern foreshadows the product:  

it is the rule for making the thing, but it is also,  

in many respects, the thing itself.  

–– Jim Coplien 

 

Christopher Alexander originally described patterns and pattern languages as a mean to improve twentieth 

century architectural design methods and practices. Patterns have since been shown to be applicable in many 

other areas as well, perhaps most notably within the field of computer science and especially manifested as 

software design patterns related to OO development. This chapter presents the ideas set forth by Alexander and 

the connection to software design patterns. We describe the core pattern concepts, such as pattern languages, 

entries, qualities, forces, descriptions, and formats, which must all be understood in order to understand what a 

pattern represents, and hence to perform a meaningful evaluation. We explain how the general pattern 

concepts relate to software patterns and in particular to OO and the ―Gang of Four‖ design patterns. We also 

present the ―Gang of Four‖ pattern system containing the twenty—three ―Gang of Four‖ design patterns, and 

explain how the patterns are classified and related. Throughout this chapter, we try to make the theory 

concrete by supplying several practical examples, and we present our views on many of the discussed topics. 

This will help understand the practical application of the ―Gang of Four‖ patterns in the evaluation. 

3.1. Christopher Alexander 
Software design patterns are based on the ideas set forth by Christopher Alexander, a licensed contractor and an 

architect, who introduced and explained patterns and pattern languages in [Alexander77; Alexander79]. These 

texts were preceded and followed by a rather large number of others on closely related topics. We only give a 

short (and far from complete) introduction to Alexander‘s numerous writings, primarily based on [Appleton97; 

Appleton00; Lea93] unless specifically noted otherwise. 

 

According to Lea, Alexander postulates that there is something fundamentally wrong with twentieth century 

architectural design methods and practices; a certain Quality Without A Name (QWAN) is missing from 

constructed environments. QWAN cannot be summarised briefly and no single term exist to convey or capture its 

meaning, but Alexander explains QWAN using partial synonyms closely related to the human impact on the 

design process like freedom, life, wholeness, and harmony [Lea93]. Consequently, constructions do not satisfy 

the real demands of users and society, because the generated environment does not have a coherent form, 

thereby failing the basic requirement that design and engineering improve the human condition. His ultimate 

goal is to build viable living structures for the people who live and work there. To remedy these shortcomings, 

Alexander suggests letting the inhabitants of the towns and buildings themselves take part in the design and 

practices using easily understandable patterns and pattern languages. This will ensure that far more inhabitable 

constructions will be made – structurally and spiritually – that will have that certain nameless quality we should 

strive for, thus reaching a coherent form. Alexander‘s patterns are design patterns concerning architecture. 
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Alexander never gives a formal definition of a pattern or a pattern language [Lea93], but offers the following 

explanation [Alexander79, p.247]: 

As an element in the real world, each pattern is a relationship between a certain context, a 

certain system of forces, which occurs repeatedly in that context, and a certain spatial 

configuration, which allows these forces to resolve themselves. As an element of language, a 

pattern is an instruction, which shows how this spatial configuration can be used, over and 

over again, to resolve the given system of forces, wherever the context makes it relevant.  

The notion of a pattern is thus two—fold. Firstly, a pattern is an abstraction of practical experience and basic 

knowledge; it is not invented as such, but discovered (or mined), and Alexander even states that some patterns 

are universally known [Alexander79; Lea93]. The idea is to identify the conflicting forces within a given context, 

and then find a solution that brings them into harmony. A pattern not only identifies a solution, it also explains 

why the solution is needed [Appleton00]. Applying a pattern is the process that generates such a solution, but 

variant solutions may be generated. Alexander therefore emphasises letting the inhabitants (e.g. end—users) 

take part in the design and stresses that human interaction is an absolute necessity in applying patterns. In 

Alexander‘s domain of designing and constructing buildings and towns (―neighbourhoods‖ or ―urban planning‖), 

a context could be an entire town or just a house. Conflicting forces could be the known problems related to 

building, say, a house. This implies that patterns may be applicable at different levels in the design and 

therefore have different granularity, ordered in a hierarchical structure.  

 

Secondly, the solution must be recorded, or described, so it can be reused in similar contexts. Alexander 

suggests a format to describe patterns in a literary non—mathematical form having the elements Name, 

Example, Context, Problem, and Solution [Lea93]. However, not everything that can be described using a 

pattern format can be considered a pattern. A pattern (entry) must ideally have a set of properties to ensure its 

quality, namely Abstraction, Composibility, Encapsulation, Equilibrium, Generativity, and Openness 

[Appleton00]. The pattern must also describe the forces that it balances. If well written, each description 

describes a whole that is greater than the sum of its parts [Lea93]. The presence of these properties combined 

with all the required pattern elements is what makes pattern entries more than just principles, heuristics, rules, 

or algorithms [Coplien, i.8-9; Lea93]. On the other hand, a pattern description will often contain the former, 

i.e. heuristics, etc., and use them as part of the pattern [Appleton00]. However, pattern descriptions leave 

room for interpretation. As Alexander desires living and constantly evolving architectures, patterns may be 

applied differently in equivalent contexts to reflect subtle changes. In [Alexander77], he writes: 

Each pattern describes a problem which occurs over and over again in our environment, and 

then describes the core of the solution to that problem, in such a way that you can use this 

solution a million times over, without ever doing it the same way twice.  

The idea of using ―descriptive manuals‖ of ―Best Practices‖ as aids to solve a given problem is nothing new and 

cannot be attributed to Alexander, but Alexander views patterns as ―a timeless way of building‖ (see 

[Alexander79]) rather than merely offering factual descriptions on how to solve various design problems. In 
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Danish, there is even a specific word to describe ―Best Practices‖ within various engineering areas, ståbi, 

meaning (an) assist, aid, or (a) stand by in form of some sort of manual describing optimal solutions to various 

technical problems5.  

 

A pattern description can be an entry in a pattern language. As such, entries are considered elements of a 

language. It is therefore essential their representation is easily understandable and recognisable so the 

described pattern can be applied in other applicable contexts. A pattern language is comprised of a fixed 

number of such pattern entries, each describing a well—proven solution to a reoccurring problem within a 

specific context inside a larger domain. Furthermore, a pattern language should describe its context in full, but 

different languages can use the same (sub—) set of patterns, combined and collaborating in different ways and 

perhaps in some order, depending on the context. Combined, the patterns can solve a more fundamental 

problem that is not explicitly addressed by any individual pattern [Appleton00; Lea93]. A pattern language 

describing the entire domain is said to be complete. Mathematically, to our knowledge, no pattern language has 

ever been proven complete, which would also seem contradictory to the idea of patterns being discovered since 

based on practical experience.  

 

Alexander constructs a pattern language containing 253 pattern entries of varying granularity, from regional 

patterns down to patterns pertaining to some small part of a house6. Alexander claims the entries form a 

complete architectural pattern language for his domain [Alexander77; Lea93]. From Alexander‘s language, 

smaller languages can be constructed using several of the contained patterns to describe sub—contexts. For 

instance, to construct a pattern language to describe a given house, some of these patterns must be used, for 

example patterns describing light, transitions, colours, surfaces, etc., while these and others would be required 

to describe an entire region. The end—user, i.e. the inhabitant, help decide which patterns to include in the 

language to construct the house [Lea93]. However, during several experiments using his pattern language, 

Alexander and others realised that it did not really work as well as intended in practice; the pattern language 

alone did not succeed in constructing coherent form because of too many unknowns, for example the order in 

which to apply the patterns. Alexander therefore introduced morphogenetic sequences, or just sequences (see 

[Alexander05b]). A morphogenetic sequence is a pattern language that adheres to a certain order of unfolding, 

i.e. the order in which patterns are applied one after another. A sequence causes a repeatable coherent order 

to unfold, which also contains the patterns and therefore is well behaved as an environment [Alexander05b]. 

Alexander‘s, as of yet, final modification to pattern languages is generative codes [Alexander05a]. Generative 

codes are also morphogenetic sequences, but include all information needed for practical implementation, 

especially concerning human interaction, as well as practical, legal, and procedural details. Alexander states 

that without the use of generative codes, the practical work cannot be done successfully.  

                                                      

 
5
  It is not that uncommon to hear a Danish engineer turned developer pondering: ―Why is there not a ståbi for this problem?‖. 

But there often is – in form of a software design pattern. 
6
  Alexander‘s patterns can be viewed online at http://www.patternlanguage.com/leveltwo/patterns.htm. 

http://www.patternlanguage.com/leveltwo/patterns.htm
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3.2. Software Patterns 
While Alexander describes patterns to supply solutions to problems related to his domain of designing and 

constructing buildings and towns, patterns and pattern languages can be, and have been, applied elsewhere, 

especially within the field of Computer Science.  

 

Around 1987, Beck and Cunningham were among the first to apply the Alexander‘s ideas to computer science. 

They constructed a pattern language containing five pattern entries describing how to design simple Graphical 

User Interfaces (GUIs) in Smalltalk, targeted at novice Smalltalk programmers [Beck87]. The patterns were not 

only related to design, but also to Human Computer Interaction (HCI) in the sense that they focused on the 

usability of the resulting design. The patterns had varying granularity and were hierarchical related, yielding an 

order of application.  

 

In 1991, Jim Coplien published a book containing a large collection of C++ idioms [Coplien91]. The book does not 

explicitly use the term pattern, but it was published years before the patterns became popular within computer 

science. However, the idiom classification of design patterns from the taxonomy listed in table 2.3 seems quite 

influenced by his work. In the early nineties, various people now considered pattern notables began collecting 

and discussing software patterns, but software patterns first became truly popular after the ―Design Patterns‖ 

book by Gamma et al. was released in 1995. The four authors became known as the ―Gang of Four‖, and the 

patterns presented in the book as the ―Gang of Four‖ design patterns. The ―Design Patterns‖ book not only 

describe twenty—three software design patterns describing communicating objects customised to solve a general 

design problem in a particular context [Gamma95, p.3], but also discuss the overall OO concepts and themes the 

patterns express (as explained in section 2.1.1 and 2.1.2). The ―Gang of Four‖ patterns have long since become 

famous and used extensively within the OO community. Many other books on patterns have since been 

published, far too many to give a meaningful and comprehensive list, and there are conferences dedicated to 

patterns held regularly, such as the Pattern Languages of Programs (PLoP) conferences. The ―POSA‖ books by 

Buschmann et al. [Buschmann96; Schmidt00] are also widely used; Buschmann et al. formulated the design 

pattern categories commonly used to this day, i.e. the architectural patterns, design patterns, and idioms 

categories from table 2.3. Besides books and conferences, online pattern repositories such as [PPR] and 

[Hillside] also provide much information regarding software patterns.  

 

It is important to state that software patterns are not restricted to software design patterns, but it is hard to 

estimate how influential Alexander‘s work has been on different kinds of patterns and individual collections, 

whether intentionally or not. For example, many of Coplien‘s C++ idioms are not really patterns, while Beck and 

Cunningham directly references Alexander and claims that their five patterns form a complete pattern language 

[Beck87]. Though not to the same extent as Beck and Cunningham, Gamma et al. clearly state that they build on 

the work by Alexander [Gamma95, p.2-4], and Buschmann et al. relate their work to Alexander as well 

[Buschmann96, p.360,414; Schmidt00, p.505-526]. But one thing is saying so, another thing is doing so. 

Alexander‘s work related to software (design) patterns is debated heartily within the community, also with 

respects to the ―Gang of Four‖ patterns (see for example [PPR]). On the other hand, pattern related concepts 

originating in computer science have also emerged, such as The Rule of Three and Proto Patterns as explained in 
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section 3.8.3 on page 49. Furthermore, as discussed in section 3.6, efforts are also being made to formalise 

pattern descriptions and include patterns as language features or implement them as reusable components in 

accordance with the principles in OO. This approach to design patterns deviates from the original concept 

defined by Alexander in the sense that the human factor is less important in applying the patterns, but is much 

more tangible and structured. 

 

More recently, different kinds of software patterns have emerged outside the scope of ―mere‖ OO design, such 

as Analysis, HCI, Organisational, or Process Patterns, used to describe other or more specialised aspects of 

software engineering [Appleton]. Analysis patterns as described by Fowler are still closely related to design 

[Fowler97], and are therefore included in our pattern taxonomy, while HCI patterns seem quite well suited to 

expand on Alexander‘s ideas in different ways than OO design has. This is because several verbose, but 

exactingly formulated, HCI methodologies already exist, based on empirically proven design guidelines, such as 

User—Centred Design (UCD) in which the end—user must participate wholeheartedly in the design of the solution 

[Borchers99]. This is reminiscent of Alexander letting the end—user participate in the design process. HCI is very 

much based on practical experiences, and because of characteristic similarities with patterns, HCI 

methodologies could be expressed using pattern descriptions, especially since the methodologies already have a 

written form.  

 

Still, software design patterns related to OO are very likely the most used kind of software patterns. People 

within the software community neither accept the usefulness of individual patterns or collections, nor the need 

for such a thing as software design patterns at all. OO has always acknowledged the need for meticulous analysis 

(OOA) and design (OOD), but prior to design patterns, descriptions of design problems where mostly of a rather 

abstract nature describing from scratch how to identify the individual parts of the system, their relationships, 

and collaborations. In our view, a textbook example of this is the otherwise good book ―Designing Object—

Oriented Software‖ by Wirfs—Brock et al. from 1990 [WirfsBrock90]. With patterns, problems of varying 

granularities have already been solved and described, giving the designer a new set of ―broader‖ tools to use in 

the analysis and design phase. The abstraction need no longer be just focused at the individual class and object 

level, but also at a higher level describing functionality, relations, and coherency traditional OO constructs 

cannot. The principles are thus separated from the implementation. We think this is a key reason behind the 

popularity of software design patterns.  

3.3. Pattern Qualities 
A pattern entry must ideally possess the set of properties listed in table 3.1 to ensure the quality of the pattern, 

namely Abstraction, Composibility, Encapsulation, Equilibrium, Generativity, and Openness [Appleton00]. Many 

of these properties have similar meaning to desirable constructs in OO, which could explain why software 

patterns first became popular within this domain. As an example, consider a class. A class is an abstraction with 

encapsulated responsibilities representing some equilibrium. It can be used as a component by other classes and 

is normally generative in its usage. It can be implemented in different languages or may even be parameterised 

with other types (openness) [Lea93].  
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Lea even writes that patterns may be viewed as extending the definitional features of classes, and that classes 

and patterns have two analogous aspects [Lea93]:  

 

I. The external, problem—space view: descriptions of properties, responsibilities, capabilities, and 

supported services as seen by the external context; and 

II. The internal, solution—space view: static and dynamic descriptions, constraints, and contracts among 

components known only with respect to a possibly incomplete external view (interface). 

 

The need for these qualities implies that there is no guarantee that a given problem can be solved using a 

pattern. Not every solution can be captured in a pattern, and not everything described by a pattern entry can be 

considered a pattern [Hohmann98]. Accordingly, a class will only express these properties if well designed. 

 
 

Table 3.1 — Pattern qualities 
 

Name 
 

Description 

 

Computer Science 

Abstraction A pattern represents a general abstraction of 
knowledge and experience within a given 
domain [Lea93]. The use of natural 
language, diagrams, illustrations, etc., is 
required.  

Objects are programmatic abstractions of 
functionality, real—world or otherwise. A pattern 
abstraction is a higher—level abstraction 
compared to what can be described by 
programming language constructs alone. The use 
of programming language in examples augments 
the pattern description, but the examples cannot 
stand—alone. 

Composibility Patterns of different granularity are 
hierarchically related (in a pattern system or 
language), indicating a rough application 
order to be adhered to when the patterns 
are unfolded. Patterns at a given level of 
abstraction and granularity may lead to, or 
be composed with, other patterns 
[Alexander77; Appleton00; Lea93].  

Objects share similar traits, and can be composed 
to achieve complex functionality. For example, a 
recurring theme in [Gamma95] is to prefer 
delegation to inheritance, which allows for 
dynamic composibility.  

Encapsulation A pattern must encapsulate an independent, 
well—defined real—world problem and 
solution within a given domain [Alexander77; 
Lea93].  

An object uses encapsulation to ensure that both 
data and the methods that operate on the data 
are correlated. Combined with information 
hiding, this ensures that the responsibilities of 
the objects are well—defined. However, an 
object need not represent a real—world problem.  

Equilibrium Indicates a balance between forces and 
constraints that minimises the conflicts in 
solution space identified by the pattern, and 
may be based on invariants and/or 
heuristics. Equilibrium provides a rationale 
for each individual step in the pattern when 
applied [Alexander77; Appleton00; Lea93].  

The responsibilities of an object represent the 
trade—offs made when designing it, and the 
functionality implemented by the object 
represents the equilibrium. 

Generativity When a pattern is applied, as described by 
its description, it provides the solution to a 
given context thereby generating a new 
resulting context, which in turn can be used 
to apply other patterns, and so forth, 
leading to the overall generation of the 
solution to the domain in question. More 

Classes can be viewed as being generative as 
well; they support parameterised instance 
construction and perhaps parameterised types 
(e.g. generics and templates). Objects in 
prototype—based languages may also support 
parameterised instance construction.  
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Table 3.1 — Pattern qualities 
 

Name 
 

Description 

 

Computer Science 

than one pattern may be applicable to a 
given context [Alexander77; Lea93].  

Openness Each pattern should be open for extension 
and parameterisation by other patterns, to 
work together to solve a larger problem. 
Realisation of the pattern should be possible 
using any number of implementations, alone 
or in conjunction with other patterns 
[Alexander77; Lea93]. Applying a pattern is 
the process that generates a solution, but it 
may generate variant solutions [Appleton00]. 
In theory, a pattern entry should be 
implemented for each usage.  

Some languages contain built—in support for 
several patterns, and libraries are commonly used 
to supply well—proven pattern implementations 
(see section 2.6.2 on page 29). Combined with 
parameterised types (e.g. generics or templates) 
even built—in classes may be considered open, for 

example java.util.Iterator<E> in Java. 

 

If a pattern exhibits these qualities, the source code implementation is likely to reflect them as well.  

 

Example 3.1 –– In example 2.4 on page 27, we claimed that the Abstract Factory, Factory Method, and 

Singleton patterns could aid in the design of the notification mechanism from example 2.1. To add value to the 

design the patterns must express the desired qualities. The Abstract Factory pattern is an abstraction of 

knowledge about creating objects without explicitly knowing their type; its description contains text, 

illustrations, as well as program code (Abstraction). The pattern functionality is required in many different types 

of flexible real—world systems, and the pattern encapsulates this task by providing a description of the problem 

as well as a proven solution to it (Encapsulation). The description explains the trade—offs in using it, for 

example that the pattern promotes consistency, but also that it can be hard to add new types of object to a 

given factory (Equilibrium). The Abstract Factory can defer the actual creation of new objects elsewhere, 

typically to Factory Method or Prototype [Gamma95, p.117] pattern implementations (Composibility and 

Openness); as a variant, it could also choose to implement the functionality by it self, for example using 

reflection in Java (Openness). Finally, Abstract Factory implementations are often suitable as candidates for the 

Singleton pattern (Generativity) ■  

3.4. Pattern Forces 
A pattern must balance opposing forces within its context to reach a balance that implicitly will be present in 

the pattern and in its application [Appleton00]. The described solution must bring the identified forces into 

harmony, or the pattern is not warranted. This implies that a pattern may represent trade—offs between various 

forces.  

 

The type of forces depends entirely on the domain and context, but forces can generally be thought of as goals 

and constraints. In computer science, the notion of force generalises the kinds of criteria used to justify designs 

and implementations [Lea00, i.12]. According to Buschmann et al., the most important non—functional forces 

regarding OO development are Changeability, Interoperability, Efficiency, Reliability, Testability, and 

Reusability [Buschmann96, p.404-410], and Lea lists a set of similar forces, such as Portability, Extensibility, 
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Fairness, Maintainability [Lea00, i.12], etc. More explicit functional forces are closely tied to the domain 

[Appleton00; Lea00, i.12-13]. A functional force can be visible to the users of the system by means of a 

particular function, or it may represent aspects of the implementation, such as the algorithm used to compute 

the function [Buschmann96, p.389].  

 

Design patterns, e.g. the ―Gang of Four‖ patterns, primarily express non—functional forces, as example 3.2 

below also illustrates. As patterns are used to implement system functionality, the forces balanced in the 

pattern may influence the system unless fully encapsulated, intentionally or otherwise. Similar, the traits of the 

system will dictate the type of applicable patterns.  

 

Example 3.2 –– A set of non—functional forces relevant for the notification mechanism from example 2.1 on 

page 21 could be Reusability, Changeability, and Extensibility related to the various design issues contemplated 

in example 2.2. If designed as an open—source library or API, Reusability becomes an important factor, as well 

as Changeability and Extensibility to manage or add new means of deliveries or new functionality. On the other 

hand, Efficiency and Fairness is not that important as long as a delivery is made eventually. As means of 

deliveries, we considered email and SMS deliveries in form of the EmailDelivery and SMSDelivery 

implementations. They are store—and—forward services, and once a message has been delivered successfully to 

the gateway, nothing more can be done from the application‘s point of view. However, other types of deliveries 

could require scheduling and processing guarantees, for example the order of delivery. A delivery writing to an 

event or audit table in a database is one example. Patterns used in the design of the notification mechanism 

should match these forces and preferably enforce them, for example using the Abstract Factory [Gamma95, 

p.87] and Factory Method [Gamma95, p.107] patterns as described in example 2.4 to ensure Changeability and 

Extensibility of associated Delivery and Formatter types. 

  

Functional forces will be closely related to the core functionality of the notification mechanism, which is a 

library for delivery of messages to subscriptions using various means of deliveries. This indicates that there will 

be an overlap between functional and non—functional forces in this case, e.g. Fairness and Extensibility. A more 

explicit functional force could be an algorithm used to correlate and concatenate related Notification 

objects to be delivered in a single delivery ■  

 

An example of an unresolved force relevant to the ―Gang of Four‖ patterns is Multithreaded Safety as suggested 

by Lea [Lea00, i.12]. In general, concurrency is not an issue discussed much in the ―Design Patterns‖ book 

[Gamma95]. This does by no means imply that the ―Gang of Four‖ patterns are faulty, but that care must be 

taken when applying them in modern concurrent systems. For example, what is the result in case of concurrent 

modification to the underlying representation used by the Iterator pattern (robustness), or how do we ensure 

that only a single instance of a Singleton type is created in a concurrent environment? 

3.5. Pattern Elements 
Alexander‘s description of patterns contains certain vital elements to ensure that it conveys the relationship 

between the context and forces, and implicitly the qualities as well [Appleton00]. A pattern format, or just 
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form, is a template dictating the elements and structure of pattern descriptions. To be able to reuse a pattern 

in a design, the pattern description must contain the decisions, alternatives, and trade—offs (forces) that led to 

it [Gamma95, p.6]. A well—written pattern must also express the desired qualities [Lea93], and is more than a 

simple recipe as Fowler explains [Fowler06]: 

Recipes tend to be more particular, usually tied to a particular programming language and 

platform. Even when patterns are tied to a platform, they try to describe more general 

concepts.  

Many different formats exist, some just slight variations of others, but no official standard is acknowledged 

[Lea00]. However, several de—facto standards exist. Alexander‘s format, Alexandrian Form, is used to describe 

architectural patterns and it contains the elements Name, Example, Context, Problem, and Solution [Lea93]. In 

computer science, the ―Gang of Four‖ (GoF) and Canonical Forms are widely used [Lea00; Appleton], but many 

other exist (for a list, see [Lea00; PPR]). For instance, the ―POSA‖ patterns are described using a variant of the 

Canonical Form [Buschmann96, p.20-21], while the ―Gang of Four‖ patterns are described using the ―Gang of 

Four‖ form, surprisingly enough. All forms in some way seem to present the elements required by Alexandrian 

Form, but not necessarily in, or as, their own sections. Some formats make these elements explicit, while others 

do not. For example, the form used by Fowler to describe his analysis patterns in [Fowler97; Fowler03] has just 

three named elements, where only the Name element corresponds to a pattern element as defined by 

Alexander. Hence, different pattern formats describe different elements, and elements differently, but 

Appleton states that the elements from the Canonical Form should be clearly recognisable upon reading a 

pattern description. The elements are Name, Problem, Context, Forces, Solution, Examples, Resulting Context, 

Rationale, Related Patterns, and Known Uses [Appleton00]. The naming of patterns is especially interesting. By 

giving a pattern a meaningful and concise name, designers, developers, and others share a common vocabulary 

(easy naming of solutions to common problems) that can be utilised in the development process, and which 

extends beyond other more traditional methods [Gamma95, p.6; Fowler06]. 

 

The pattern description will be affected by the domain targeted by the pattern. The ―Gang of Four‖ design 

patterns operate in OO environments, and OO concepts and themes utilised by Gamma et al. will be reflected in 

the patterns and their application, i.e. implementation. The concepts and themes thus become important in 

order to understand the patterns as a whole. However, the format used to describe the patterns can also affect 

the pattern, because not all formats are appropriate for a given domain [Vlissides97, i.7].  

3.5.1. “Gang of Four” Format 

The format used by Gamma et al. in the ―Design Patterns‖ book has since been named the ―Gang of Four‖ 

format, or GoF form. The Canonical Form builds on the format, and shares many elements; it can be viewed as a 

generalised version of the ―Gang of Four‖ format. The format is commonly used, and often used as a base for 

variant forms [Fowler06]. The format is highly structured compared to the Alexandrian form of writing, which is 

narrative and almost lyrical [Vlissides97, i.7]. Table 3.2 explains the general purpose of the different elements. 

It also relates them to the most relevant qualities from table 3.1 as we see it. 
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Table 3.2 — ―Gang of Four‖ pattern format (modified from [Gamma95, p.6-7]) 
 

Element 
 

Description 

 

Qualities 

Name A concise pattern name that conveys the pattern essence. Abstraction 

Classification The classification of the pattern according to the two 
dimensions Scope (Class and/or Object) and Purpose 
(Creational, Structural, or Behavioural).  

Abstraction, Composibility, 
Generativity 

Intent A short statement that answers the following questions: What 
does the design pattern do? What is its rationale and intent? 
What particular design issue or problem does it address? 

Abstraction, Equilibrium 

Also Known As Alternative names, if any. Abstraction 

Motivation An example that illustrates a design problem and how the 
class and object structures in the pattern solve the problem. 

Abstraction 

Applicability In which situations can the pattern be applied? What are 
examples of poor designs that the pattern can address? How 
can you recognise these situations? 

Abstraction, Composibility, 
Generativity 

Structure A graphical representation of the classes and objects in the 
pattern.  

Abstraction, Encapsulation 

Participants The classes and/or objects participating in the design pattern 
and their responsibilities. 

Abstraction, Encapsulation 

Collaborations How do the participants collaborate to carry out their 
responsibilities? 

Abstraction, Encapsulation 

Consequences How does the pattern support its objectives? What are the 
trade—offs and results of using the pattern? What aspect of 
the system structure does it let you vary independently? 

Equilibrium, Openness 

 

Implementation 
 

What pitfalls, hints, or techniques should you be aware of 
when implementing the pattern? Are there language specific 
issues? 

 

Composibility, Equilibrium, 
Generativity, Openness 

 

Sample Code 
 

Code fragments that illustrate how you might implement the 
pattern. 

 

Generativity, Openness 

Known Uses Examples from real systems. Composibility, Generativity, 
Openness 

Related Patterns Related patterns, if any. Composibility, Generativity, 
Openness 

 

The elements listed in light grey are the elements most closely related to pattern implementation, i.e. 

Implementation and Sample Code. As described in chapter 5, the evaluation pays special attention to these 

elements. The format as described in the ―Design Patterns‖ book explicitly mentions that the Sample Code 

element will supply source code in C++ or Smalltalk [Gamma95, p.7], because the ―Gang of Four‖ patterns are 

illustrated in these languages. Similar, the Implementation element is closely related to these languages as well, 

or at least the features of the languages. The use of these languages in the pattern description may influence 

the pattern application using other languages, e.g. Java 6, because they tie the patterns to specific languages. 

This is also noted by Gamma et al. [Gamma95, p.4]. As patterns are discovered in existing source code (see 

section 3.8.1 on page 47), the Implementation and/or Sample Code elements may very well represent extracts 

from real systems written in the same programming language. Both the problem and solution may thus have 

originated in, or because of, the language in question.  
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3.6. Pattern Formalism 
The lack of a formalised concept of a design pattern has long been a vigorously debated issue within the pattern 

community (see for example [Eden98, p.3; Eden02, p.380] and much of [Hillside; PPR]). It goes to the very core 

of understanding, or agreeing on, what software design patterns are. Formalism is closely related to tool support 

for pattern mining, understanding, and application. The efforts to formalise design patterns intentionally oppose 

Alexander‘s ideas of patterns languages and patterns expressing the QWAN in favour of more analytic and 

structural approaches [Eden98, p.3]. Practically all software design pattern formats are already much more 

structured compared to the Alexandrian format. Stated bluntly, Eden says most followers of Alexander‘s ideas 

treat software design patterns as sacred cows, no less, which cannot, and should not, be formalised, while 

followers of the efforts to bring structure, formalism, and tools to the pattern community are rational [Eden98, 

p.3]. In this feud, we take the middle ground. Formalism can be a valuable tool to aid the practical 

implementation of design patterns, i.e. componentization, tooling, and ease of understanding, while 

remembering that software design patterns ideally express more than program code, i.e. part of a vocabulary, 

highly adaptable, used for teaching and understanding of concepts, etc. 

 

While formal specifications may clarify pattern functionality, we fail to see how it can describe the human 

aspect in patterns and in their application, expressed in, and as a combination of, various pattern elements. 

Strict formalisation of patterns will deemphasise the human aspect greatly, which goes against Alexander‘s 

original ideas. Vlissides agrees and writes [Vlissides97, i.4]: 

In short, patterns are primarily food for the brain, not fodder for a tool. There may yet be 

latent benefit in methodological or automated support, but I'm convinced it'll be icing on the 

cake, not the cake itself or even a layer thereof.  

Even more so, as described in section 3.5, different pattern formats describe different elements and elements 

differently. If formalism is to succeed, we believe it will be at the expense of variety of pattern formats. This 

could pose a problem, as a single pattern format does not fit all [Vlissides97, i.7].  

 

Baroni et al. discuss numerous OO and pattern formalisation methods in [Baroni03], and conclude that all the 

reviewed mechanisms have drawbacks, and cannot capture all the concepts related to patterns [Baroni03, 

p.11,53]. In light of the reviews, Baroni et al. also conclude that certain pattern elements in the ―Gang of Four‖ 

format are easier used in the pattern formalisation process, namely Participants, Collaborations, Structure, and 

in part Implementation [Baroni03, p.8,53]. As explained in table 3.2 on page 41, the first three elements relate 

to the actual design and relationships of the classes and objects used in the pattern. Common relations like 

inheritance, creation, and forwarding are labelled as simple [Baroni03, p.11] and are clearly encompassed by 

the concepts and themes described by Gamma et al. The Implementation element primarily express 

programming language constructs, which are highly structured. The four elements all favour structured over 

unstructured information. In our view, this is a clear indication that formalisation is closer related to 

fundamental OO concepts as opposed to pattern concepts, such as qualities and forces that cannot easily be 

described. The human factor is missing. Pattern concepts are what make patterns powerful abstractions and 
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tools, not just the OO mechanisms used to implement them. Formalism may be able to resolve some 

ambiguities, but literal descriptions are still warranted to describe the human aspect. 

3.7. Pattern Collections 
A pattern cannot describe a complete OO system by itself, but targets a specific problem within the system. 

Instead, patterns are often interrelated and rely on the behaviour of other patterns to achieve their own goals, 

especially so for patterns targeting the same domain or even context. The relations between patterns are 

important because applying a specific pattern may generate the need to apply other patterns; a relation can 

also indicate different possible solutions in form of other patterns. In the ―Gang of Four‖ format, as described in 

section 3.5.1, the Related Patterns element expresses such pattern relationships. Based on how coherent a 

collection of patterns are, including how they individually are described, patterns can be correlated in different 

types of collections as explained in table 3.3 below.  

 
 

Table 3.3 — Pattern collections 
 

Name 
 

Description 

Catalogue A pattern catalogue is a collection of loosely and/or informally related patterns. The contained 
patterns are often divided into broad categories and are not necessarily written using uniform 
pattern entries or even format [Buschmann96, p.23].  

System A pattern system is a cohesive set of related patterns described in a consistent format, working 
together to support construction and evolution of whole architectures [Buschmann96, p.361].  

Language A pattern language can be viewed as a pattern system covering a complete domain with rules 
and guidelines, which explain how and when to apply its patterns to solve a problem that is 
larger than any individual pattern can solve [Appleton00].  

 

Pattern catalogues can evolve into pattern systems, and due to the obvious benefits of systems over catalogues, 

catalogues are rarely used because the knowledge they represent may be too unstructured to be truly useful in 

the design process. Gamma et al. identify the ―Gang of Four‖ pattern collection as a ―catalogue‖ [Gamma95, 

p.8], but according to the Buschmann et al. definition, they constitute a pattern system. This is because the 

―Design Patterns‖ book predates the ―POSA‖ books. The ―Gang of Four‖ design patterns all target the same 

domain; they are interrelated in intricate ways; many depend on other patterns to supply functionality; and they 

are all written using the same format. 

 

Though pattern systems share many desirable traits with pattern languages7, they can at most be considered 

incomplete pattern languages [Buschmann96, p.360]. Pattern systems lack the robustness and wholeness of 

pattern languages. Because of narrower focus, most are described using only a sub—set of the pattern elements 

in the Canonical Form, but may eventually evolve into a pattern language. Pattern languages are not created all 

at once, but evolve from pattern systems. In practice, however, the difference can be very hard to detect 

                                                      

 
7
  The first ―POSA‖ book uses the term pattern systems as almost a synonym for pattern languages as described by Alexander 

[Buschmann96, p.360-362], while the second book explicitly differentiates between systems and languages [Schmidt00, 
p.524-526]. 
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[Appleton00]. Dominus, for example, states that systems and even catalogues are what many people mistake for 

pattern languages [Dominus02].  

 

A pattern language can be thought of as a ―super pattern‖ that can be applied to solve a problem in its entirety. 

The contained patterns solve sub—problems in a divide—and—conquer fashion [Appleton00; Buschmann96, 

p.403]. Very few authors claim to have, or have indeed, constructed a complete pattern language. Alexander 

claims his 253—entry pattern language is complete for his domain, while Beck and Cunningham were among the 

first to create a pattern language within the field of computer science, containing only five pattern entries 

[Beck87]. According to Buschmann et al., other small languages from computer science include Crossing Chasms 

for connecting OO systems to relational database, and CHECKS by Cunningham for information integrity 

[Buschmann96, p.360]; in [Schmidt00, p.510-524], Buschmann et al. themselves claim to present a pattern 

language for middleware and applications in relation to concurrency and networking. By Alexander‘s definition, 

the general case is that pattern languages are very rare in any field. In computer science, catalogues and 

systems are much more common because of their lenient definitions. As we understand it, this is also a key issue 

pointed out by several critics of software patterns (see for example [Dominus02]): pattern languages are not 

used in computer science, merely the patterns themselves in a loosely organised fashion. Regardless, whether or 

not such languages indeed are pattern languages is open for debate, because there is no mathematical way to 

determine it. 

3.7.1. “Gang of Four” Pattern System 

In 1995, Gamma et al. published the ―Design Patterns‖ book [Gamma95], describing twenty—three individual 

design patterns contained in a pattern system pertaining to OO, which popularised the use of patterns in 

computer science [Appleton00]. As explained in section 2.5.1.3, the ―Gang of Four‖ design patterns describe 

concepts and structures beyond individual objects and classes up to the granularity level of refinement of OO 

sub—systems, customised to solve a general design problem in a particular context [Gamma95, p.3]. Below, 

table 3.4 lists the twenty—three ―Gang of Four‖ design patterns from [Gamma95], including their classifications 

and relationships.  

 

Gamma et al. classify the ―Gang of Four‖ patterns in two dimensions according to Scope (Class and/or Object) 

and Purpose (Creational, Structural, or Behavioural) [Gamma95, p.10]. The Scope criterion identifies whether 

the pattern applies primarily to classes or objects. Class patterns deal with relationships between classes and 

their sub—classes. Object patterns are more dynamic, and deal with objects and their relationships, but almost 

all the patterns uses inheritance, and thus classes to some extent. Purpose is a problem—based criterion that 

classifies the ―Gang of Four‖ patterns according to what they do. Creational patterns focus on the instantiation 

process of objects [Gamma95, p.81]; Structural patterns focus on how classes and objects are composed to form 

larger structures [Gamma95, p.137]; and finally Behavioural patterns focus on algorithms and assignment of 

responsibilities between objects [Gamma95, p.221]. Other types of problem—based classifications exist, for 

instance Concurrency patterns (see for example [Schmidt00]). 
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Table 3.4 — ―Gang of Four‖ pattern system 
 

Name 
 

Description 
 

Scope 

 

Related Patterns 
 

Creational Patterns 

Abstract 
Factory 

Provide an interface for creating families of 
related or dependent objects without specifying 
their concrete classes [Gamma95, p.87].  

Object  creates Bridge 

 alternative to Builder 

 collaborates with or alternative 
to Facade 

 uses Factory Method  

 uses or alternative to Prototype 

 is a Singleton 

Builder Separate the construction of a complex object 
from its representation so that the same 
construction process can create different 
representations [Gamma95, p.97]. 

Object  alternative to Abstract Factory 

 creates Bridge 

 creates Composite 

 is a Singleton 

Factory 
Method 

Define an interface for creating an object, but 
let sub—classes decide which class to instantiate. 
Factory Method lets a class defer instantiation to 
sub—classes [Gamma95, p.107]. 

Class  used by Abstract Factory 

 used by Iterator 

 alternative to Prototype 

 used by Template Method 

Prototype Specify the kinds of objects to create using a 
prototypical instance, and create new objects by 
copying this prototype [Gamma95, p.117]. 

Object  used by or alternative to 
Abstract Factory 

 implemented by Command 

 collaborates with Decorator 

 alternative to Factory Method 

 is a Singleton 

 collaborates with Template 
Method 

Singleton Ensure a class only has one instance, and provide 
a global point of access to it [Gamma95, p.127]. 

Object  implemented by Abstract Factory 

 implemented by Builder 

 implemented by Facade 

 implemented by Mediator 

 implemented by Prototype 

 implemented by Observer 

 implemented by State 
 

Structural Patterns 

Adapter Convert the interface of a class into another 
interface clients expect. Adapter lets classes 
work together that could not otherwise because 
of incompatible interfaces [Gamma95, p.139].  

Class, 
Object 

 alternative to Bridge 

 alternative to Decorator 

 alternative to Proxy 

Bridge Decouple an abstraction from its implementation 
so that the two can vary independently 
[Gamma95, p.151]. 

Object  created by Abstract Factory 

 alternative to Adapter 

 created by Builder 

Composite Compose objects into tree structures to 
represent part—whole hierarchies. Composite 
lets clients treat individual objects and 
compositions of objects uniformly [Gamma95, 
p.163]. 

Object  created by Builder 

 collaborates with Chain of 
Responsibility 

 collaborates with Decorator 

 collaborates with Flyweight 

 used by Interpreter 

 uses or collaborates with Iterator 

 collaborates with Visitor 

Decorator Attach additional responsibilities to an object 
dynamically. Decorators provide a flexible 

Object  alternative to Adapter 

 collaborates with Prototype 
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Table 3.4 — ―Gang of Four‖ pattern system 
 

Name 
 

Description 
 

Scope 

 

Related Patterns 

alternative to sub—classing for extending 
functionality [Gamma95, p.175]. 

 collaborates with Composite 

 alternative to Strategy 

Facade Provide a unified interface to a set of interfaces 
in a sub—system. Facade defines a higher—level 
interface that makes the sub—system easier to 
use [Gamma95, p.185]. 

Object  collaborates or alternative to 
Abstract Factory 

 alternative to Mediator 

 is a Singleton 

Flyweight Use sharing to support large numbers of fine—
grained objects efficiently [Gamma95, p.195]. 

Object  collaborates with Composite 

 used by Interpreter 

 implemented or used by State 

 implemented by Strategy 

Proxy Provide a surrogate placeholder for another 
object to control access to it [Gamma95, p.207]. 

Object  alternative to Adapter 

 alternative to Decorator 
 

Behavioural Patterns 

Chain of 
Responsibility 

Avoid coupling the sender of a request to its 
receiver by giving more than one object a chance 
to handle the request. Chain the receiving 
objects and pass the request along the chain 
until an object handles it [Gamma95, p.223]. 

Object  collaborates with Composite 

Command Encapsulate a request as an object, thereby 
letting you parameterise clients with different 
requests, queue or log requests, and support 
undoable operations [Gamma95, p.233]. 

Object  is a Composite 

 uses Memento 

 is a Prototype 

Interpreter Given a language, define a representation for its 
grammar along with an interpreter that uses the 
representation to interpret sentences in the 
language [Gamma95, p.243]. 

Class  uses Composite 

 uses Flyweight 

 uses Iterator 

 uses Visitor 

Iterator Provide a way to access the elements of an 
aggregate object sequentially without exposing 
its underlying representation [Gamma95, p.257]. 

Object  used by or collaborates with 
Composite 

 uses Factory Method 

 used by Interpreter 

 uses or alternative to Memento 

Mediator Define an object that encapsulates how a set of 
objects interact. Mediator promotes loose 
coupling by keeping objects from referring to 
each other explicitly, and it lets you vary their 
interaction independently [Gamma95, p.273]. 

Object  alternative to Facade 

 collaborates with Observer 

 is a Singleton 

Memento Without violating encapsulation, capture and 
externalise an objects internal state so that the 
object can be restored to this state later 
[Gamma95, p.283]. 

Object  used by Command 

 used by or alternative to Iterator 

Observer Define a one—to—many dependency between 
objects so that when one object changes state, 
all dependants are notified and updated 
automatically [Gamma95, p.293]. 

Object  collaborates with Mediator 

 is a Singleton 

State Allow an object to alter its behaviour when its 
internal state changes. The object will appear to 
change its class [Gamma95, p.305]. 

Object  is a or uses Flyweight 

 is a Singleton 

Strategy Define a family of algorithms, encapsulate each 
one, and make them interchangeable. Strategy 

Object  alternative to Decorator 



EVALUATING SOFTWARE DESIGN PATTERNS –– THEORY AND BACKGROUND MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis  Page 47 of 197 

 

Table 3.4 — ―Gang of Four‖ pattern system 
 

Name 
 

Description 
 

Scope 

 

Related Patterns 

lets the algorithm vary independently from 
clients that use it [Gamma95, p.315]. 

 is a Flyweight 

 alternative to Template Method 

Template 
Method 

Define the skeleton of an algorithm in an 
operation, deferring some steps to sub—classes. 
Template Method lets sub—classes redefine 
certain steps of an algorithm without changing 
the algorithm‘s structure [Gamma95, p.325]. 

Class  uses Factory Method 

 collaborates with Prototype 

 alternative to Strategy 

Visitor Represent an operation to be performed on the 
elements of an object structure. Visitor lets you 
define a new operation without changing the 
classes of the elements on which it operates 
[Gamma95, p.331]. 

Object  collaborates with Composite 

 used by Interpreter 

 

The legends used to describe the pattern relationships indicate the type of relationship. We have deciphered the 

relationships by examining all the pattern descriptions, especially the Related Patterns element, as well as 

[Gamma95, f.1—1,p.9-13]. The relationships do not indicate that the patterns must be used together as 

illustrated, merely that they can be. They are by no means a formal specification of the ―Gang of Four‖ 

relationships, but help provide an overview in the practical application. The Uses and Used by legends typically 

indicates a strong relationship, often a ―has—a‖ relationship corresponding to composition and/or delegation in 

compliance with the general ―Gang of Four‖ themes as described in section 2.1.2 on page 18. The Is a and 

Implemented by legends indicates an ―is—a‖ relationship, corresponding to class—based inheritance or interface 

implementation. The Collaborates with legend indicates some form of collaboration between the patterns, for 

example that both can be used by in conjunction by other patterns; the term is broadly defined and could refer 

to a stronger relationship such as Used by depending on the actual application. The Creates and Created by 

legends indicates a special form of creational collaboration. Finally, the Alternative to legend indicates that 

alternative, but not identical, solutions to a problem exist; however, applying one pattern over an alternative 

one may generate considerable changes to the design.  

3.8. Pattern Evolution 
Individual patterns evolve over time, but so too can pattern catalogues, systems, and languages. This is of 

pivotal importance because the patterns must reflect their environment, which according to Alexander is 

constantly evolving.  

3.8.1. Mining 

Mining is the non—trivial art of discovering new patterns within systems in a given domain and describing them. 

This is a term originating in computer science, but Alexander present similar ideas. The general idea is that true 

patterns are discovered, not invented, due to the duality in the definition of a pattern as explained in section 

3.1. Coplien states that patterns observed in an existing system may not be desirable. Some patterns are non—

generative, descriptive, and passive, i.e. recipe—like, which is not good and do not lead to desirable results 

[Coplien, i.3]. Only good patterns should be mined for actual (re—) use, which can then help generate new 
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systems that will contain the pattern traits. Such patterns are generative, prescriptive, and active; they are 

more than simple recipes.  

 

Since patterns represents common best—practices to reoccurring solutions, the pattern naturally has to be found 

in more than one design. The Rule of Three simply states that any pattern must have been found in at least 

three real—world systems for it to be considered a valid pattern [PPR, p.RuleOfThree]. Gamma et al. state that 

none of the ―Gang of Four‖ design patterns represents new or unproved designs, but that they are elements of 

some successful OO system, or part of the folklore of the OO community [Gamma95, p.2].  

3.8.2. Anti—Patterns 

Anti—Patterns focus on existing software failures in an attempt to understand, prevent, and recover from them 

[McCormick01]. The term and its meaning were originally coined by Brown et al. as a counterpart to design 

patterns [Brown98]. Since they represent specific pitfalls to avoid during software development, they can 

naturally be found within any imaginable area, for instance management, organisation, design, programming, 

etc. Anti—Patterns are described using structured formats and each description is based on existing (bad) 

solutions [McCormick01]. Anti—patterns are sometimes referred to as code smells.  

 

Design patterns are often the ―cure‖ for anti—patterns. They describe a solution that will remedy the problems 

inherent in the anti—pattern. Pattern mining is therefore closely related to anti—patterns: new patterns may 

produce commonly accepted design patterns that can be used to avoid common pitfalls, but on the other hand, 

overly or wrong use of design patterns may be an anti—pattern by itself. Rarely, design patterns can thus be the 

very ―symptom‖ described by an anti—pattern. The optimal solution is to evolve from designs containing anti—

patterns – well, preferably containing none – to designs utilising well—described design patterns without 

constructing new anti—patterns in the process.  

 

Example 3.3 –– The Layers pattern [Buschmann96, p.31] discussed in example 2.3 on page 25 is a design 

pattern offering a solution to pitfalls described by the Big Ball of Mud [PPR, p.BigBallOfMud] anti—pattern 

[Buschmann96, p.29]. It offers structure instead of chaos. On the other hand, the Singletonitis [Vieiro06] anti—

pattern describes overly or wrong use of the Singleton [Gamma95, p.127] pattern; it exists because the Singleton 

pattern exist, and designers using the Singleton pattern should be aware of this. Example 2.4 on page 27 

considered applying the Singleton pattern in the design of the described notification mechanism, specifically to 

ensure unique Delivery and Formatter factories. Forcing singleton objects into libraries may cause 

unforeseen runtime consequences, such as class loading issues in Java, but it may also cause undesirable 

behaviour, such as severely restricting how clients can use and combine factories. The latter may be fine, but 

the consequences must naturally be thought through. In any case, the evolution of the notification mechanism 

could even require refactoring causing less frequent usage of the Singleton pattern ■  

 

There is no precise checklist specifying what constitutes an anti—pattern, but [PPR, p.AntiPatternsCatalog] lists 

many commonly accepted anti—patterns. Nevertheless, functionality some people regard as anti—patterns, 

others do not; even more so, functionality some regard as patterns, others regard as anti—patterns! A simple 
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example is invoking an overridden method in a super class from inside the overriding method in the sub—class, 

i.e. an extra tight coupling between a super and sub—class that must be enforced by the developer. In Java, 

finalizer chaining is an example of this: when overriding java.lang.Object.finalize(), the developer 

must ensure that the finalize() method in the super—class is invoked [Bloch01, p.22-23]. Fowler identifies 

this as the Call Super [Fowler05] anti—pattern because there is no way to guarantee that the sub—class will 

invoke the overridden method in the super class (as opposed to method combination, for example in CLOS 

[DeMichiel87]). However, according to Grand [Grand99, p.179], Beck identifies this as a design pattern called 

Extend Super, though with a slightly different context. As a practical example, Livshits has identified misuse of 

the Extend Super pattern in the Eclipse project, which corresponds to the situation described by the Call Super 

anti—pattern [Livshits05, p.1-2].  

3.8.3. Proto Patterns 

Ideally, a newly discovered and initially described pattern is called a proto pattern until its qualities and 

elements have been validated and acknowledged by others, if at all, for example at a PLoP conference. This is 

also a term originating in computer science. A proto pattern will be investigated to see if it is meaningful within 

its domain; if it describes the forces at play; if it has the required elements and qualities; if the Rule of Three is 

adhered to; etc. Even if a proto pattern is accepted as a valid pattern, there is no guarantee that it will ever be 

commonly used. Many patterns are left unused. This does not necessarily mean that they are not useful, though 

as a concept design patterns are often misused to denote anything that has the slightest touch of 

recognisability, but perhaps rather that their context and problem is too specific to be truly valuable. On the 

other hand, many so—called patterns have been published violating the needed elements and qualities, not to 

mention the Rule of Three, or representing a solution in which no forces are at play. They could also be passive 

as described by Coplien, not generating quality solutions. 

 

Once a proto pattern has been established to represent a valid pattern, it is no longer considered a proto 

pattern. The problem is naturally ―who‖ decides this. Furthermore, since Alexander describes patterns as being 

non—static, we claim they will always function as ―prototypes‖ in form of their knowledge and descriptions. For 

example, the ―Gang of Four‖ Command [Gamma95, p.233] pattern has at least spawned the ―POSA‖ Command 

Processor [Buschmann96, p.277] pattern, and in the evaluation we even present a variant of the Command 

Processor pattern that might eliminate the need to use Composite [Gamma95, p.163] (or macro) commands (see 

section 8.3.2.3 on page 159).  

3.8.4. Piecemeal Growth 

Catalogues can mature and evolve into pattern systems over time as well as systems can mature and evolve into 

pattern languages via a process Alexander calls piecemeal growth: patterns are applied in an ordered sequence 

of piecemeal growth, progressively evolving an initial architecture, which will then flourish into a ―live‖ design 

possessing the QWAN (see also table 3.1). As patterns are applied by the means of piecemeal growth, applying 

one pattern provides a context for the application of the next pattern [Appleton00]. This implies that both the 

collection and the design will evolve; if an individual pattern evolves, it may thus affect the entire collection.  
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According to Appleton [Appleton00], Alexander explains that piecemeal growth is based on the idea of repair as 

opposed to traditional architectural development processes that are based on the idea of replacement. 

Traditional processes assume that each act of design or construction can be viewed in isolation, ―perfect‖ at the 

time of construction. Alexander calls such processes large lump development. Piecemeal growth acknowledges 

that environments are continuously changing and growing in order to keep its use in balance. Appleton notes 

that there are similarities between piecemeal growth and spiral development processes involving prototyping 

and iterative/evolutionary development, such as XP, as well as large lump development and the Waterfall model 

[Appleton00]. As explained in section 2.2, iterative OOMs acknowledge that the design is not static, but dynamic 

in nature. By using design patterns sharing similar traits the design will be able to evolve more easily. 

 

A decade ago, Buschmann et al. speculated that the development of complete software design pattern 

languages was an optimistic, but worthwhile goal [Buschmann96, p.422]. To this day, the goal has not been 

achieved, not even using the ―Gang of Four‖ patterns as the system to evolve into a proper pattern language. 

Buschmann et al. estimate that the ―Gang of Four‖ pattern system may cover as much as half of the general—

purpose design patterns of its domain [Buschmann96, p.422], i.e. at the granularity level of a few number of 

cooperating classes. Even though the ―Gang of Four‖ patterns are also over a decade old, no additions have been 

added to the system by the authors. Many other design patterns have been published since then, however, 

claiming to target the same domain as the ―Gang of Four‖ patterns, for example the well—known ―POSA‖ 

patterns. To our knowledge, no unified attempt has yet been made to combine the vast number of design 

patterns into a unified language, or even system. This does not mean that the ―Gang of Four‖ pattern system is 

static, or has not evolved. As stated, many individual ―Gang of Four‖ design patterns have spawned variants or 

other related patterns. Furthermore, variants of the system itself could also evolve, for example a system 

balancing the Multithreaded Safety force described by Lea [Lea93, i.12]. To handle this force explicitly, each 

―Gang of Four‖ pattern would have to be re—engineered, causing at least changes to the description and sample 

code, but perhaps also to the pattern it self. 

3.9. Pattern Application 
As any tool or method, design patterns must be used correctly, i.e. when the design warrants it. It is as simple 

as that. It is as difficult as that. Patterns cannot really offer any guarantees that the application design will be a 

successful one [Vlissides97, i.5], and a critical, or at least careful, approach to any pattern is warranted in our 

opinion. Usage is closely related to how design patterns are perceived; i.e., as a practical tool; formally; more 

abstract along Alexander‘s original ideas; or somewhere in between.  

3.9.1. Usage 

Several anti—patterns can help describe misuse of design patterns. The Cargo Cult [PPR, p.CargoCult] anti—

pattern can explain the dangers of using design patterns without understanding why, and on a software 

engineering level, it can describe the dangers of following the procedures dictated by an OO Method (OOM) 

without understanding why. This is relevant for the evaluation in case the investigated ―Gang of Four‖ patterns 

advocate the use of specific language features. The Golden Hammer [PPR, p.GoldenHammer] anti—pattern can 
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describe the overuse of design patterns, i.e. applying patterns were they are not needed, perhaps adding 

unnecessary layers to the code (over—engineering). As a practical example, Livshits describes misuse of the 

Extend Super (or the anti—pattern Call Super) and Observer patterns in the Eclipse project [Livshits05, p.1-3].  

 

At [PPR, p.DesignPatternsConsideredHarmful], these very issues are discussed, especially over—engineering. No 

conclusions are drawn, naturally, as the use and understanding of design patterns is the individual designer‘s 

prerogative, in part because of the lack of formalism. However, we do think that critics often neglect the fact 

that design patterns are more than recipes, especially concerning the ―Gang of Four‖ patterns. A common 

misconception is what Vlissides calls ―the belittling dismissal‖ [Vlissides97, i.2]: patterns are only seen as 

recipes containing jargon, rules, programming tricks, data structures, etc., without acknowledging important 

pattern aspects such as problem, context, teaching, and naming. The value of the ―Gang of Four‖ vocabulary 

should not be underestimated because it is a powerful tool for communicating design issues [Vlissides97, i.4]. 

While the ―Gang of Four‖ patterns may not be applicable for all contexts, the concepts and themes identified in 

section 2.1.1 and 2.1.2 can still be utilised, because designers familiar with the patterns should also be familiar 

with these themes and concepts.  

 

Pattern usage is closely tied to the implementation. Another issue raised is whether the use of design patterns 

result in duplicate code within a system or not [PPR, p.PatternBacklash]. Some of the main design goals in any 

OO system are reuse, maintenance, and modification [WirfsBrock90, p.9]. The goals are reflected in the most 

important non—functional forces regarding OO development as defined by Buschmann et al., namely 

Changeability, Interoperability, Efficiency, Reliability, Testability, and Reusability [Buschmann96, p.404-410] 

(see also section 3.4 on page 38). Ideally, functionality should be referenced, not copied [PPR, 

p.OnceAndOnlyOnce]. Duplication of code does not mix well with these principles and forces. Therefore, the 

principle in applying patterns can seem contradictory to the very forces the patterns should heed. General 

refactoring, pattern componentization, and language support are possible solutions to duplicate code problems. 

Componentization and language support are discussed in some detail in chapter 4.  

3.9.2. Understanding 

Dominus has a bleak, but practical and perhaps more realistic, view on software design patterns and their usage, 

and insists that software design patterns as described by the ―Gang of Four‖ and many others are fundamentally 

different from Alexander‘s ideas of patterns and especially pattern languages [Dominus02]. According to 

Dominus, the ―Gang of Four‖ idea is to discover existing design patterns (mining), and then program people to 

implement them habitually. Contrary to this, Alexander‘s pattern language help decide what should be 

designed, but does not dictate how to design anything; the user can decide what patterns will lead to a good 

design. Hence, Dominus concludes that the two approaches are completely different, representing two different 

meanings assigned to the term design pattern. The ―Gang of Four‖ approach is much less profound and human, 

and he strongly advocates that the software pattern community needs to re—implement Alexander‘s ideas.  

 

As we understand Alexander, we agree with the statement that software pattern collections really do not 

express the ideas set forth by Alexander concerning pattern languages, e.g. QWAN, order of unfolding, 
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generativity, etc. We perceive design patterns as a valuable and practical tool to aid the design process, but one 

that do not generate fixed solutions. Ergo, we once again agree with Vlissides, who writes [Vlissides97, i.6]:  

The key to generativity is in the parts of a pattern dedicated to teaching — the forces and their 

resolution, for example, or the discussion of consequences. These insights are particularly 

useful as you define and refine an architecture. But believing that patterns themselves can 

generate architectures or anything else is definitely over the top. Patterns don't generate 

anything; people do, and they do so only if both they and the patterns they use are up to snuff. 

On the other hand, we think that software design patterns in practice generally try to express the ideas of 

forces and pattern elements, and to some extent pattern qualities. A testament to this is the large number of 

references to Alexander‘s writings on these exact topics, for example [Appleton00; Gamma95; Lea93; Lea00; 

PPR], but more importantly that the pattern formats commonly used all express these notions. Dominus seems 

close to performing ―a belittling dismissal‖ [Vlissides97, i.2] of the ―Gang of Four‖ patterns. We also think 

Dominus neglects the fact that Alexander‘s patterns really cannot be chosen completely at random because of 

the order of unfolding, including granularity. Because software pattern collections differ from Alexander‘s ideas, 

they rarely have such restrictions. The designer is still free to choose relevant design patterns, and should be 

able to decide how to implement them. In any case, even if the meaning of software design patterns differs 

from Alexander‘s notion, they can still be used (as Dominus also notes).  

3.10. Summary 
A software design pattern is a pattern related to the design of software systems, but patterns can be applied 

in different areas and fields. The term “design pattern” refers to a classification of software design patterns 

that can be used throughout the OOD phase for OO systems, targeting communicating objects and classes 

that are customised to solve a general design problem in a particular context. Design patterns thus rely 

heavily on OO concepts, and separate the principles from the implementation. Different languages can thus 

be used to implement the solution described by a given pattern. 

 

The notion of a pattern is two—fold: a pattern is an abstraction of practical experience and basic knowledge, 

but it is also a literary description of this knowledge, written in a consistent format. The pattern describes 

the problem it solves as well as a solution to it; hence, the pattern can be applied for similar problems in other 

contexts. As such, design patterns are not invented, but discovered in existing solutions. Different formats 

exist, containing required pattern elements to describe different important aspects of the pattern 

functionality, such as a concise name, forces, related patterns, etc. A format traditionally uses natural 

language, illustrations, and examples as opposed to formal specifications. The naming of patterns allows 

designers and others to communicate architectural ideas in a high—level consistent language. Hence, human 

interaction is paramount in pattern application because patterns are not out—of—the—box reusable 

components; pattern application as described by Alexander requires interpretation and adaptation to apply 

in them in the design at hand. Within computer science, however, efforts are being made to include patterns as 

language features or implement them as reusable components. Not everything that can be written using a 
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pattern format constitutes a valid pattern, because patterns must possess a certain set of qualities to ensure 

the overall quality of the design. The qualities are Abstraction, Composibility, Encapsulation, Equilibrium, 

Generativity, and Openness, and many of these qualities have similar constructs in OO.  

 

A pattern can be an entry in a collection. A pattern catalogue is a collection of loosely and/or informally 

related patterns, while a pattern system is a cohesive set of related patterns described in a consistent format 

that works closely together. A pattern language can be viewed as a pattern system covering a complete 

domain with rules and guidelines, which explain how and when to apply its patterns to solve a problem that is 

larger than any individual pattern can solve. Patterns and pattern collections will evolve over time, reflecting 

knowledge gained through continued use and adaptation. Patterns can present solutions to known software 

failures that are recorded as anti—patterns, but unwise application of patterns may be an anti—pattern by 

itself. As patterns are implemented using a given programming language, the features of the language may 

influence the application and perhaps bring new insights to the pattern description. On the other hand, the 

pattern description may also dictate behaviour that has direct impact on the implementation.  

 

Within the pattern community, there is some debate about what a design pattern is. Some people are followers 

of Alexander’s ideas, which emphasise the human interaction, while others prefer more structural 

approaches in order to analyse and apply patterns. Pattern formalism tries to bring rigid structure to design 

patterns at the expense of human interaction. In this thesis, we try to apply the best from both worlds. We 

perceive design patterns as a valuable and practical tool to aid the design process, but one that do not 

generate fixed solutions. As any tool or method, design patterns must be used correctly: only when the 

design warrants it.  

  

The “Gang of Four” design pattern system contains twenty—three design patterns classified in two 

dimensions: Scope and Purpose. The Scope criterion identifies whether the pattern applies to Classes and/or 

Objects. Purpose is a problem—based criterion that classifies the ―Gang of Four‖ patterns according to what 

they do. Creational patterns focus on the instantiation process of objects, Structural patterns on how classes 

and objects are composed to form larger structures, and Behavioural patterns on algorithms and assignment 

of responsibilities between objects. The ―Gang of Four‖ patterns are described using the “Gang of Four” 

format, using C++ and Smalltalk as example code, and we deciphered the pattern descriptions to clarify and 

label the relationships between the individual ―Gang of Four‖ patterns. The ―Gang of Four‖ patterns express 

the OO themes and concepts described in chapter 2. The concepts and C++ constructs used in the ―Gang of 

Four‖ canonical pattern implementations will be used extensively in the evaluation as reference points for 

the features used in the Java 6 implementations.  
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4. Related Work 
 

When the only tool you have is a hammer,  

everything looks like a nail. 

–– Abraham Maslow 

 

The connection between design patterns and programming languages has been debated since the ―Gang of Four‖ 

patterns were published. In this chapter, we discuss selected studies regarding application of the ―Gang of Four‖ 

patterns using specific languages, as well as how different features may help provide simpler implementations or 

even components. The level of language support for a given pattern will influence the implementation because 

it determines how much work is required to apply the pattern. We focus on both dynamic and static languages 

as we consider Java 6 a hybrid: though static, its special language mechanisms and runtime capabilities allow 

Java to exhibit very dynamic behaviour at runtime. We compare the different studies and relate the 

observations to issues deemed relevant for Java 6. As always, a summary concludes this chapter. 

 

The choice of language will affect the pattern application because the language will ultimately decide what can 

and what cannot be done (easily) in light of supported programming paradigms [Gamma95, p.4]. Several studies 

have been undertaken to investigate ―Gang of Four‖ pattern application in various programming languages. This 

chapter discusses studies of implementations in dynamic languages like Common Lisp, Dylan, and Scheme, and in 

static languages like C++, Java, Java + AspectJ, and Eiffel. Common features used in the various studies as well 

as discovered common pattern behaviour are compared in section 4.4, but this is not an easy task as the studies 

have different focus. We start by establishing the level of support a given language has for a given pattern. 

4.1. Language Support 
The traditional close connection between design patterns and statically typed languages is criticised by some, 

mainly because static languages often lack advanced runtime constructs. The ―human compiler‖ is put to work, 

repeatedly writing Meta—programs, e.g. patterns, to cope with the missing (runtime) features [Graham02]. Even 

more specific, some believe the ―Gang of Four‖ design patterns are simply a library of C++ code templates 

[Dominus02; PPR, p.DesignPatternsInDynamicProgramming]. However, such claims seem to neglect that several 

of the ―Gang of Four‖ patterns were exemplified using Smalltalk that has advanced runtime features, including 

dynamic typing and reflection. The patterns are still relevant even if implemented in Smalltalk. Still, others 

regard traces of the ―Gang of Four‖ patterns in the source code as code smells; an indication of the language 

used is not powerful enough and/or developers blindly using design patterns [Halloway07]. This view assumes 

that the entire pattern abstraction can be represented as language features. The point is moot as already 

discussed in section 3.9 because like any other tool, design patterns should be used only when the design merits 

it. Furthermore, we have yet to a see a language that has built—in support for all the ―Gang of Four‖ patterns. 

 

At [PPR, p.AreDesignPatternsMissingLanguageFeatures], it is discussed whether a pattern stops being a pattern 

in the context of a language that has some kind of built—in support for it. The discussion concerns the verbal use 

of the term pattern and as well as its meaning. There is no definitive conclusion presented, but it is suggested 
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that design patterns are one way programming languages can evolve. The consensus seems to be that a pattern 

does not stop being a pattern because a given language has support for it, but that designers stop referring to it 

explicitly as a pattern, effectively altering the common vocabulary of patterns for the given domain. From this 

follows that developers will stop referring to the pattern description as well; therefore, we conclude, the 

ultimate consequence must then be that when all programming languages implement a given pattern, or have 

support for it as a component, there will no longer be use for its description. These issues indicate a very strong 

connection between patterns and languages, but one that may eventually be discarded. Meyer calls this the 

Pattern Elimination Conjecture: any useful pattern should in the long term be discarded as a pattern, and 

replaced by reusable components with a clear, simple, directly usable interface [Meyer03, p.41]. This 

corresponds well with the efforts being made regarding pattern formalism as described in section 3.6 at the 

expense of human interaction in the application process. 

4.1.1. Implementation Level 

In [Norvig96], Norvig classifies the level of implementation a pattern can have in a given programming language 

as paraphrased in table 4.1 below. Built—in support for a pattern thus corresponds to either Invisible or Formal 

if part of the standard libraries, while Informal corresponds to Alexander‘s view on pattern application. 

 
 

Table 4.1 — Pattern implementation level (modified from [Norvig96, p.7]) 
 

Level 
 

Description 

 

Java 6 Example 

Invisible A pattern is so much a part of the language that its usage is 
not noticed by the user.  

The for—each loop help hide explicit 
usage of the Iterator pattern.  

Formal A pattern is implemented in a language, but must be 
instantiated or called for each use (component).  

The Iterator pattern can still be 
explicitly implemented and/or used.  

Informal A pattern is part of a common shared vocabulary and 
referred to by name, but must be implemented from scratch 
for each use based on its description.  

The Singleton pattern must be 
implemented for each relevant class. 

 

Note, that even though a pattern is invisible on average use does not mean that it cannot be used formally. 

Invisible and Formal does not exclude a pattern from a common vocabulary or from being implemented 

alternatively either, e.g. Informally. The classification is rather subjective because different users may notice 

different things, depending on their point of view: an API developer may need to create different Iterator 

implementations, but the API user may not need to. In our view, the distinction between Invisible and Formal is 

vaguely defined, whereas it is easier to distinguish between Formal and Informal.  

 

As summarised in the section 4.2.1, Norvig implements the ―Gang of Four‖ patterns in Common Lisp and Dylan 

and arrives at ―simpler‖ implementations. At [PPR], Norvig‘s simpler implementations of the ―Gang of Four‖ 

patterns are seen as augmenting Graham‘s critique about the ―human compiler‖ at work. However, while Norvig 

is in agreement with Graham in using certain dynamic features to implement functionality, Graham is directly 

criticising the concept of design patterns. By using a proper language, says Graham, the need for design patterns 

is non—existent. We disagree, and to our understanding, so does Norvig, Meyer [Meyer03, p.41], and [PPR].  



EVALUATING SOFTWARE DESIGN PATTERNS –– THEORY AND BACKGROUND MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis  Page 56 of 197 

4.1.2. Discussion 

In our view, the validity of a design pattern is not lessened because a given language has full, partial, or just 

easier support for it. The knowledge represented by a design pattern should ideally be independent of any 

specific programming language, what Norvig calls Programming Into a language [Norvig96, p.58] as already 

described in section 2.5. Lea states that a pattern is not an implementation, but instead describes when, why, 

and how to go about creating an implementation or other engineering product [Lea00, i.6]. We believe the 

danger of equalising design patterns with the implementation is forgetting that the human factor is paramount 

in understanding and applying design patterns in different contexts, which is exactly what makes design patterns 

a very flexible tool indeed. On the other hand, the ease and practicality of using design patterns is also 

important. For example, nobody wants to implement the Iterator pattern for each system. In Java, the Java 

Collections framework is used. In Java, however, everybody has to implement the Singleton pattern for each 

applicable class because the language does not support the abstraction described by the pattern (which Java 

actually in part does, as discovered during the evaluation and explained in section 7.1.1.4 on page 92). Hence, 

the sheer practicality in the frequent application of certain simple design patterns in our view warrants Formal 

and/or Invisible implementations, respectively componentization and/or language support. Even though Coplien 

is in favour of pattern componentization [Coplien, i.3], he equalises the human factor (still required) with 

creativity and claims it will always be needed [Coplien, i.11]. Along these lines, Fowler argues that patterns are 

needed because real—world solutions have failed despite using the latest technology for lack of ordinary 

solutions. Patterns provide a way to organise and name those ordinary solutions to make it easier for ordinary 

people to use them [Fowler06]. This is contrary to Graham‘s claim of design pattern usage being 

―institutionalised‖ [Graham02], especially considering no standard formalisation of patterns has been agreed 

upon as discussed in section 3.6 on page 42.  

 

Practical pattern implementation, however, is dependent on the pattern granularity. A pattern can be applied 

across systems, but also within systems. Typically, architectural design patterns, having large granularity, are 

applied once per system, for example the Two—Tier Architecture pattern from example 2.3 on page 25. We find 

it reasonable to assume their level of granularity and abstraction will make them difficult to componentize 

compared to the ―Gang of Four‖ patterns with finer granularity. Therefore, they must be adapted to the system 

at hand. Hence, it is also unlikely they will evolve into language features. Ergo, they will not cause duplicate 

code. Conversely, the ―Gang of Four‖ design patterns describe problems and solutions that are so common they 

occur in many different contexts with relatively fine granularity within the same system. It is unreasonable to 

assume that such patterns, for example Iterator, would be applicable only once in a system, even more so for 

idioms as they are very tightly connected to a given programming language.  

 

On the other hand, even some ―Gang of Four‖ patterns like Facade and Template Method pose problems because 

of abstraction and granularity level. Hence, componentization and language support in form of Formal and 

Invisible patterns, respectively, can augment reuse, but patterns that for one reason or another remain Informal 

still generate specific implementations for each usage even within the same system. We consider the Singleton 

pattern the archetypal example of this in Java. This raises the issue if Informal design patterns collide with the 

principles of OO as discussed at [PPR]. In our view, this is not the case. Each application of the pattern will 
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cause an implementation targeted for a specific problem in a specific context within the system. Two different 

contexts will thus cause two different implementations, albeit similar. Common functionality can still be 

factored out. What appears as duplicate code is in reality not; the true semantics come from the pattern 

description combined with the specific adaptation. In Alexander‘s domain, a house could be an analogy to an OO 

system: is it unreasonable to assume that within a given house, a ―window pattern‖ can be applied more than 

once? Obviously not, and this results in duplicate functionality. In case the design of a window is discovered to 

be flawed, for example if the glass does not provide sufficient insulation, all windows have to be repaired or 

replaced eventually. Still, the alternative is surely not to apply the pattern only once.  

 

We believe the success of componentizing a given pattern into a language or library depends perhaps more so on 

its abstraction and granularity level than the language in which it is implemented. It is possible, though, that the 

language will dictate behaviour that makes componentization difficult, if not impossible. While the human 

factor is important in understanding and applying patterns, we still think simple design patterns should be 

componentized, if possible; or even better evolve into language features. 

4.2. Dynamic Languages 
The studies by Norvig [Norvig96] and Sullivan [Sullivan02a; Sullivan02b] emphasise that dynamic features of 

Common Lisp, Dylan, and Scheme, respectively, have a large impact in providing simpler implementations. 

However, we cannot find a standard precise definition of what a dynamic language is or what it must support. A 

generalisation is that a dynamic language possesses one or more of the following overall features: dynamic 

typing, runtime code modification, and interpretation [Hacknot07]. Dynamic typing (or dynamic type binding) 

enforces type rules at runtime as opposed to compile—time. The type of a variable is not determined until the 

variable is actually used at runtime [Sethi96, p.137]. Runtime code modification allows changes to the structure 

of executing code, for example adding new methods to an object. Interpretation is the process of reading and 

evaluating program code at runtime without prior compilation; an interpreter runs the program directly 

[Sethi96, p.20]. It is also worth noting that Common Lisp, Dylan, and Scheme all are functional languages. 

4.2.1. Common Lisp and Dylan 

Not long after the ―Design Patterns‖ book was published, Norvig showed that sixteen of the twenty—three ―Gang 

of Four‖ patterns have qualitatively simpler implementation in Common Lisp or Dylan compared to C++ for at 

least some uses of each pattern [Norvig96, p.9]. Common Lisp and Dylan are dynamic languages, and many of 

the language features found in dynamic languages are exactly what makes the pattern application simpler, such 

as first—class types [Norvig96, p.10]. Table 4.2 illustrates the specific features Norvig found that influenced 

specific ―Gang of Four‖ patterns.  

  

Unfortunately, Norvig does not directly apply his implementation level classification to the ―Gang of Four‖ 

patterns, nor does he discuss why seven patterns cannot be made simpler in dynamic languages. Though note 

that four of them are Structural patterns, i.e. Adapter, Bridge, Composite, and Decorator, two are Creational, 

i.e. Prototype and Singleton, and only one is Behavioural, namely Memento. At first, this seems to make sense: 
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dynamic languages are all about runtime behaviour whereas Structural patterns represent (static) structure. 

However, the ability to perform runtime code modification would seem to affect at least Adapter, and Decorator 

is an ideal candidate for method combination. Furthermore, the two Creational patterns would be almost 

directly supported in prototype—based languages, which Common Lisp and Dylan are not; Common Lisp utilises 

CLOS for OO capabilities (e.g. multiple—dispatch), and Dylan utilises built—in classes. 

 
 

Table 4.2 — ―Gang of Four‖ patterns in Common Lisp and Dylan (modified from [Norvig96, p.10]) 
 

Feature 
 

Description 

 

“Gang of Four” patterns 

First—class types Types can be used without restrictions and are treated 
as any other (first—class) object, i.e. can be 
constructed at runtime, stored in variables, have 
identities, etc. [Norvig96, p.11].  

Abstract Factory, Chain of 
Responsibility, Factory 
Method, Flyweight, Proxy, 
State 

First—class functions A first—class function is a first—class object, and can 
for example be created at runtime [Norvig96, p.14]. 

Command, Strategy, 
Template Method, Visitor 

Macros Macros provide syntactic abstraction [Norvig96, p.17]. Interpreter, Iterator 

Method combination Combination of methods having the same signature to 
execute in a given order [Sullivan02a, p.9]. Enforced by 
the language as in CLOS or explicitly, e.g. using the 
Extend Super pattern (see section 3.8.2 on page 48). 

Mediator, Observer 

Multi—methods 
(multiple—dispatch, 
generic function) 

In multiple—dispatch, methods are grouped based on 
their name into multi—methods, and the correct 
method to invoke is determined based on all the 
arguments [Sullivan02a, p.8-9]. 

Builder 

Modules  A module explicitly encapsulates data and operations 
[Sethi96, p.209]. May also represent namespaces 
[Norvig96, p.28]. 

Facade 

 

Not discussed 
 

Adapter, Bridge, Composite, Decorator, Memento, Prototype, Singleton  

 

Some understand Norvig‘s work as a criticism of design patterns, but in our view, Norvig is not criticising the 

concept of design patterns, merely stressing the impact of the programming language, advocating the use of 

dynamic languages. Norvig even suggests several other pattern variants for dynamic languages as well [Norvig96, 

p.31]. He states that design patterns are higher—order abstractions for program organisation that help discuss, 

weigh, and record design trade—offs [Norvig96, p.4].  

4.2.2. Scheme 

In [Sullivan02a] and [Sullivan02b], Sullivan studies if language features can move design patterns away from the 

Informal implementation level into the Invisible or Formal levels; that is, how the basic capabilities of reflection 

and dynamism affect the need for, use of, and implementation of the ―Gang of Four‖ design patterns. To try to 

establish a connection between modelling and programming languages, Sullivan investigates how languages can 

enable more abstraction in a declarative style, i.e. abstraction expressed using language constructs, for example 

in form of multi—methods. Sullivan emphasises the need for modelling as models enable abstraction, are 

declarative in style, and can allow for pre—runtime verification, but warns that dynamic features make it more 

difficult to analyse program statically [Sullivan02b, p.3,35]. As the language, Scheme is used with the GLOS 
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library that adds certain OOP facilities. Sullivan reasons that reflection is closely related to first—class values as 

reflection refers to the ability of a program to reason about its own structure and behaviour [Sullivan02a, p.3]. 

Table 4.3 summarises the outcome of Sullivan‘s investigations based on the summaries for each investigated 

pattern in [Sullivan02a]. It illustrates which features where useful in a given pattern implementation, and there 

is a large overlap with the features discussed by Norvig from table 4.2.  

 
 

Table 4.3 — ―Gang of Four‖ patterns in Scheme + GLOS 
 

Feature 
 

Description 

 

“Gang of Four” patterns 

First—class types See table 4.2 on page 58. Abstract Factory, Builder, 
Prototype  

First—class functions See table 4.2. Adapter, Builder, Chain of 
Responsibility, Command, 
Iterator, Mediator, Strategy 

Macros See table 4.2. Proxy  

Method combination See table 4.2. Decorator, Proxy, Memento 

Multi—methods 
(multiple—dispatch, 
generic functions) 

See table 4.2. Abstract Factory, Adapter, 
Builder, Chain of 
Responsibility, Factory 
Method, Mediator, Observer, 
Strategy, Visitor 

Modules  See table 4.2. Adapter 
 

Reflection Reflection refers to the ability of a program to reason 
about its own structure and behaviour [Sullivan02a, 
p.3]. 

Abstract Factory, Prototype, 
Chain of Responsibility, 
Memento 

Instantiation protocols Controls how objects are created, either explicitly or 
implicitly (hidden or built—in). 

Factory Method, Singleton, 
Flyweight, Proxy 

Singleton types A type that matches exactly one value [Sullivan02a, 

p.6], e.g. an instance of java.lang.Class in Java.  

Abstract Factory, Factory 
Method, Proxy 

Predicate types Predicate types are based on predicate functions and 
thus resolved at runtime [Sullivan02a, p.9]. 

State 

Closures A closure consists of an expression (function) and its 
saved environment [Sethi96, p.534]. 

Command, Flyweight, 
Iterator, Strategy 

Prototype—based  Has no notion of classes. Behaviour reuse is achieved by 
cloning existing objects that act as prototypes. 

Prototype, State 

 

None (similar) 

 

Bridge (universal), Composite, Facade (universal), Interpreter, Template Method 
(universal) 

 

In accordance with Norvig, Sullivan concludes that dynamic features such as reflection, multiple—dispatch, 

higher—order functions, and predicate types have a positive impact on nearly all of the ―Gang of Four‖ patterns 

[Sullivan02a, p.43]. Underlined patterns in the table above represent similar usage by Norvig. Instantiation and 

method protocols are also effective [Sullivan02b, p.34]. Sullivan states that the need for explicit patterns may 

disappear or the implementation may become much simpler, but mention that the Scheme implementations do 

not always capture the entire pattern functionality. Emphasis is clearly on the implementation aspect at the 

expense of pattern abstraction. Factory Method and Singleton, for example, are described as easily 
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implemented in any language supporting an extensible instantiation protocol, but C++ already supports 

modification of the instantiation protocol by overloading new [Stroustrup91, p.215]. This indicates that the 

patterns describe more than code. Command and Strategy are implemented using closures, but closures do not 

capture the abstraction of an object with additional functionality, i.e. extra functionality, polymorphism, 

identity, etc. Just because a language supports a given feature does not mean the feature is the pattern by 

itself. What it does mean is that the feature in certain cases can represent the pattern implementation in the 

language in question. 

 

Comparing the results from Sullivan and Norvig, it puzzles us that Norvig only lists the patterns as utilising a 

single feature. It is probably for educational or practical purposes, i.e. listed according to primary exploited 

feature. We think this is why there is little overlap in features for the individual patterns (underlined patterns in 

table 4.3), while the overall conclusions are the same. Unfortunately, it makes it hard to conclude anything 

based on Norvig‘s study. Sullivan is more detailed, and several of the patterns not covered by Norvig are 

addressed, for example Adapter, Decorator, Prototype, and Singleton. Sullivan‘s conclusion, however, comes as 

no surprise as Scheme is closely related to Lisp. Like Norvig, Sullivan accedes that the ―Gang of Four‖ patterns 

are closely related to design and modelling as the patterns discuss design trade—offs. Even more so, certain 

patterns represent universal programming concepts that cannot be solved with language features alone 

[Sullivan02a, p.43; Sullivan02b, p.36].  

4.3. Static Languages 
C++ and Java are statically typed languages. Type errors are detected at compile—time. The advanced features 

discussed by Gamma et al. for the ―Gang of Four‖ implementations all but a few exclusively targets Smalltalk, 

which uses dynamic typing.  

4.3.1. C++ 

The ―Gang of Four‖ patterns all supply implementation or sample code in C++. The features used are those 

presented in the Implementation and Sample Code pattern elements in [Gamma95]. Gamma et al. primarily use 

C++ constructs found commonly elsewhere as well, e.g. classes, inheritance, access modifiers, etc., but more 

exotic features like templates, multiple inheritance, friends, overloaded operators are also utilised. These 

features are not found in Java 6, and hence alternative ways to implement the pattern in question must be 

applied.  

4.3.2. Java 

All the ―Gang of Four‖ design patterns have been implemented in at least Java 1.2, 1.3, and 1.4, some even at 

an Invisible implementation level as exemplified in section 2.6.2 on page 29. Many different Java 

implementations of individual ―Gang of Four‖ patterns exist. Grand, for example, presents almost exact Java 1.2 

versions of all the ―Gang of Four‖ design patterns in [Grand98; Grand99], and Hannemann et al. have 

implemented pure, albeit very simple, Java 1.4 versions used for comparison with the AspectJ implementations 

discussed next [Hannemann02]. Another example is [Eckel03], where some of Java‘s more advanced features 
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such as reflection and dynamic proxies are used. However, the implementation level of the individual patterns is 

primarily Informal, and we know of no efforts to componentize the ―Gang of Four‖ patterns in Java 5 or 6. 

 

Hence, all ―Gang of Four‖ patterns are known to be applicable in Java. This is expected as Java adheres to the 

fundamental OO concepts and can directly express many of the themes discussed by Gamma et al. Java is not 

considered a dynamic language, but it still possesses advanced runtime features like reflection and dynamic 

class loading. Bearing Norvig and Sullivan‘s work in mind, we therefore assume that the practical application will 

be easier and/or present alternatives to the canonical C++ implementations. On the other hand, runtime 

features in class—based languages often yield verbose source code, which could imply more work, and possibly 

clutter the core functionality and intent of the pattern when reviewing the source code. Reusable libraries and 

components, however, can shield the pattern implementations from much of this. 

4.3.3. Java and AspectJ 

Sullivan notes that crosscutting concerns of Aspect—Oriented Programming (AOP) matches well design patterns 

because patterns are primarily concerned with the coordination of multiple ―parts‖ of a system, typically via 

classes and abstract methods [Sullivan02a, p.3]. Patterns are the glue that connects the joints [Sullivan02b, 

p.6]. Hannemann et al. have shown this in practice by implementing the ―Gang of Four‖ patterns in Java 1.4 and 

AspectJ [AspectJ], claiming that seventeen of the twenty—three implementations exhibit modularity 

improvements in terms of better code locality, reusability, composibility, and (un)pluggablity. The 

improvements vary, but with the greatest improvement coming when the pattern solution structure involves 

crosscutting concerns, e.g. one object playing multiple roles, many objects playing one role, or an object 

playing roles in multiple pattern instances [Hannemann02, p.1]. Besides locality and reusability, and following 

code—level benefits, Hannemann et al. state that modular pattern implementations ensure that the entire 

pattern description of a pattern instance is localised and does not ―get lost‖ or ―degenerate‖ in a system as 

could otherwise pose a problem [Hannemann02, p.7]. Twelve of the implementations constitute reusable 

components with respect to abstract aspects [Hannemann02, t.1].  

 

AspectJ uses aspects to encapsulate crosscutting concerns in one place. They can apply additional behaviour, or 

advice, to various joint points, for example constructors or methods. Joint points are specified using pointcuts, 

either directly or in form of a ―query‖ to detect if a given joint point matches the aspect based on signatures. 

Furthermore, to encapsulate all code related to a given concern in a single aspect, the open class mechanism 

might be used to declare members or parents of another class. For a full introduction to AspectJ, see [AspectJ]. 

Table 4.4 on page 62 lists the different AspectJ features used to improve the various ―Gang of Four‖ 

implementations.  

 

As expected, the dynamic features of AspectJ are what facilitate easier implementations. Advice is equivalent 

to the method combination features found in CLOS and GLOS, clearly illustrated in the ability to execute the 

contained code before, after, and around join points, though advice cannot be added or removed at runtime 

[Sullivan02a, p.20]. Hannemann et al. utilise this feature extensively, for example to intercept calls to new for 

Singleton classes, thereby creating a specific instantiation protocol. Pointcuts can be seen as macros. In pure 
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Java, the reflection mechanism does not allow for structural changes to classes or objects, only behavioural 

(―read—only‖). By exposing the structure of the executing program as objects, for example the 

java.lang.Class and java.lang.reflect.Method classes representing a class and a method, 

respectively, such objects can be accessed like any other first—class object. In AspectJ, however, the open class 

mechanism is a work—around to modify Java‘s otherwise static classes, approaching true first—class behaviour. 

AspectJ still adheres to the standard Java semantics, which gives certain static advantages such as compile—

time type errors. Some errors are still only seen at runtime, for example if a given pointcut does not capture a 

jointpoint as expected.  

 
 

Table 4.4 — ―Gang of Four‖ patterns in Java + AspectJ 
 

Feature 
 

Description 

 

“Gang of Four” patterns 

Roles only used within 
pattern aspect 

Abstract aspect per pattern defines the roles and 
default implementations where possible, local to the 
pattern realisations. Abstract pointcuts specify hooks 
for additional specialisation [Hannemann02, p.5]. 

Chain of Responsibility, 
Composite, Command, 
Mediator, Observer 

Aspects as object 
factories 

Patterns are abstracted into aspects containing code for 
the factory functionality; the factory methods used are 
contained either in the abstract aspect or in the 
participants [Hannemann02, p.5]. 

Flyweight, Iterator, Memento, 
Prototype, Singleton 

Language constructs Pattern implementations are directly affected by 
language constructs such as the open class mechanism 
or by attaching advice [Hannemann02, p.6]. 

Adapter, Decorator, Proxy, 
Strategy, Visitor 

Multiple inheritance Pattern implementations can implement any number of 
interfaces and use the open class mechanism to attach 
default functionality [Hannemann02, p.6]. 

Abstract Factory, Factory 
Method, Bridge, Builder, 
Template Method  

Scattered code 
modularised 

Attaching advice to be break tight coupling between 
participants [Hannemann02, p.7]. 

Interpreter, State 

 

None (similar) 

 

Facade 

 

Some of the implementations in AspectJ result in a completely new design structure. We find it difficult to 

identify the actual role Java occupies in this study as opposed to specific AspectJ features. Most of the Java 

features used in the implementations are trivial, such as classes and interfaces. Very few advanced features 

such as inner classes and weak references are used. The pattern functionality is achieved with the AspectJ 

features, which may mimic C++ features such as multiple inheritance and private (functional) inheritance.  

 

By using Java‘s built—in reflection mechanism and annotations as of version five, we believe much of the same 

dynamic functionality could be achieved without the use of AspectJ, though at some expense. Classes could 

implement advice functionality that can be attached to any accessible object (jointpoint), i.e. field, 

constructor, or method. Pointcuts could be specified by annotations. Unfortunately, all access to enriched 

objects must go through proxy objects to intercept invocations to apply the advice, but it would allow the 

advice to change at runtime. This indicates a need for a framework to handle the execution. Furthermore, as 

reflection would be utilised extensively, runtime errors are in effect unavoidable, but probably manageable. It 

reminds us of existing products using similar ideas, such as Hibernate, JBoss Seam, or Google Guice. In any case, 
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in accordance with Sullivan‘s conclusions, Java‘s reflection mechanism could have a significant impact on the 

―Gang of Four‖ pattern implementations as most are exemplified using C++ that has few runtime features. 

4.3.4. Eiffel 

In section 2.6.2 on page 29, we discussed how patterns could aid in the implementation phase during OO 

development. Options are adaptation and application, componentization, and language support, corresponding 

with Norvig‘s implementation levels Informal, Formal, and Invisible, respectively. Using Eiffel as the 

programming language, Meyer and Arnout claim to provide full componentization for eleven of the ―Gang of 

Four‖ patterns and partial componentization for an additional four [Meyer06, p.3], totalling two thirds of the 

patterns. Full componentization is defined by Meyer and Arnout to include all the original pattern functionality 

[Meyer06, p.2] and is equivalent to what Norvig calls first—class patterns [Norvig96, p.31]. Their implementation 

level is Formal because as components they can be treated like any other object [Norvig96, p.32], or Invisible as 

part of the language. Componentization is an effective way to avoid duplicate code as discussed in section 3.9.1 

on page 50. It is more difficult than ad—hoc pattern application as examined by Norvig and Sullivan, however, 

because it focuses extensively on reusability. The focus of Meyer and Arnout is closer to pure Java 6 

implementations compared to the AspectJ implementations by Hannemann et al., because their components 

rely on reusable classes, not reusable aspects [Arnout06]. Furthermore, the specific Eiffel features utilised in 

the components are described in [Arnout06, t.1]. 

 

Examples of full componentization achieved by Meyer include Composite, Command, Abstract Factory, and 

Visitor [Meyer06, p.10-11]. Six patterns required some form of automated support to help integrate them into 

libraries through reusable skeletons, or though components that address part of the problem. Only two patterns 

could not even be partially componentized or handled through some automated support, namely Facade and 

Interpreter; Facade is obvious, because it is completely dependent on the context and abstraction used, it 

seems universal and language independent. Componentization makes pattern application in the implementation 

phase much easier, but also fixates the behaviour to the functionality available. A componentized pattern is only 

applied once, and then reused, possibly in a specialised fashion; it becomes a mere recipe instead of a full—

fledged description. Partial componentization does not express the full knowledge expressed in the pattern 

descriptions, thereby limiting the pattern applicability unless the component itself expresses pattern—like 

qualities such as Openness and Generativity. The same is true for any Invisible or Formal implementation.  

 

Meyer and Arnout recognise that the language used clearly affect the componentization process [Arnout06; 

Meyer06, p.3,11], and that componentization affects pattern applicability [Meyer06, p.11]. Eiffel is not a 

dynamic language as it employs static and strong typing, but many of its special features are used, such as 

multiple inheritance, generics with or without bounds, contracts, agents, and cloning facilities [Arnout06, t.1]. 

Meyer and Arnout compare the Eiffel features used with features in Java (1.4), and question if the ideas used in 

the Eiffel implementations can be used in Java, although they suggest that reflection might provide some 

solutions [Arnout06]. Language impact and componentization are therefore closely related, which is also 

demonstrated by the fact that AspectJ features augment the entire componentization process in the study by 

Hannemann et al. As of Java 5, generics have been added to Java, but multiple inheritance and agents are not 
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supported. However, we fail to see how the lack of these features should prevent componentization of the 

―Gang of Four‖ patterns in Java, but agree that different solutions must be implemented.  

4.4. Comparison 
This section offers a quick comparison between the features utilises in the examined studies and the features 

found in Java 6. It also summarises common pattern behaviour identified in the individual studies as well as can 

be expected bearing the different scope of the studies in mind. The features listed in this section is not the final 

list of Java 6 features and mechanisms used in the evaluation, but provide clues to which features may be 

useful.  

 

The studies on Common Lisp, Dylan, and Scheme all focus on making the ―Gang of Four‖ implementations 

simpler using explicit language features found in the respective languages. The AspectJ and Eiffel 

implementations focus on traditional OO values, primarily reusability, where the language features used are 

simply the means to an end. This evaluation is somewhere in between: we do not strive to make the 

implementations simpler – since that depends on the eye of the beholder – but to illustrate how features in Java 

6 can be utilised in the implementation process, which may spawn reusable components. 

4.4.1. Features 

Sullivan concludes that dynamic features such as reflection, multiple—dispatch, higher—order functions, and 

predicate types have a positive impact on nearly all of the ―Gang of Four‖ patterns [Sullivan02a, p.43]. Norvig 

agrees, and claims dynamic features found in dynamic languages is exactly what makes the pattern application 

simpler [Norvig96, p.10]. Java 6 in part supports two of these three dynamic traits described in section 4.2, i.e. 

dynamic typing, runtime code modification, and interpretation. Java employs static typing in favour of dynamic 

typing. Baring instrumentation (see the java.lang.instrumentation package), runtime code modification is 

not directly supported by Java. The reflection mechanism does not allow for structural changes to classes or 

objects, only behavioural (―read—only‖). Java objects can access Meta data reflectively, such as classes and 

methods, and dynamic proxies can be used to create new types at runtime. Java is compiled into byte—code 

that is interpreted at runtime.  

 

The studies by Norvig and Sullivan suggest that Java‘s reflective capabilities will be useful in the pattern 

implementation. Of the features listed in table 4.2 and table 4.3, Java 6 supports several of them but to a 

varying degree. First—class types and functions are only partly supported. There is no way to create a regular 

class or method on—the—fly, but dynamic proxies can create duck types at runtime (see section 7.1.2.4). 

Besides creational restrictions, types and methods can be manipulated like any other object (―second—class 

objects‖). Modules correspond to packages. Multi—methods are not supported, but generic methods can be used 

in a type safe manner for any applicable type. Closures are partly supported in form of inner classes. 

Instantiation protocols and method combination must be explicit enforced by the developer, which is 

unfortunate, as these features are found useful in Common Lisp, Scheme, and AspectJ.  
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Meyer and Arnout list the features used for the ―Gang of Four‖ patterns they succeeded to componentize 

[Arnout06, t.1]. The features used include ―design—by—contract‖ (invariants), inheritance, multiple inheritance, 

generics, bounded generics, agents, and cloning facilities. Java 6 has direct support for inheritance, generics, 

bounded generics, and cloning. Agents, or delegates, are not directly supported by Java 6, but can be emulated 

by closures or using reflection. Design—by—contract and multiple inheritance are not supported. Java assertions 

are useless as they must be turned on to work. It may be possible to use dynamic proxies to emulate multiple 

inheritance. 

 

The Hannemann et al. study does not offer much concerning which Java features to use. The comparison 

between features in C++ and Java 6 is already indirectly made in table 2.2 on page 15. 

4.4.2. Patterns 

It is interesting that Hannemann et al., Meyer, and Arnout cannot componentize at least the same set of 

patterns, namely Adapter, Bridge, Decorator, Facade, Interpreter, and Template Method [Arnout06; 

Hannemann02, t.1]. As illustrated in table 4.3, Sullivan has trouble providing simpler implementations for all of 

these patterns except Adapter and Decorator. Norvig does not discuss Adapter, Bridge, and Decorator, perhaps 

an indication of simpler implementations could not be made. This indicates the pattern abstractions are very 

context and problem specific. It is also interesting that out of the twenty—three ―Gang of Four‖ patterns, only 

four have Class scope – and three of these are included in the above list, namely Adapter, Interpreter, and 

Template Method. Hannemann et al. cannot componentize the last pattern with Class scope either, Factory 

Method. The implementation level of these patterns thus corresponds to Informal. However, it does not say 

anything conclusive about language dependencies. It could seem reasonable to assume that the same language 

features are required regardless of language used, for example abstract classes in Template Method, package—

like functionality in Facade, and composition in Interpreter. Nonetheless, Common Lisp and Scheme have no 

notion of classes, so this is clearly not the case for Template Method, for example. Other language features may 

also be applied. As an example, decoration and adaptation can be performed using dynamic proxies in Java 6. In 

our view, no definitive conclusions can be drawn in this respect. This corresponds with our initial belief from 

section 4.1.2 that the success of componentizing a given pattern into a language or library feature depends 

more on its abstraction and granularity level than the language in which it is implemented.  

 

For Java and AspectJ, it is clear that Behavioural patterns are most easily componentized, with eight out of the 

twelve: Chain of Responsibility, Command, Composite, Iterator, Mediator, Memento, Observer, and Strategy. 

The last four are Composite and Flyweight (Structural) and Prototype and Singleton (Creational) [Hannemann02, 

t.1]. Many of the Behavioural patterns have a container—like structure, or operate on a container—like 

structure, for example Observer and Visitor, respectively. In our opinion, this makes them ideal for 

componentization, as the abstraction is not that complicated. Of the fifteen patterns componentized by Meyer 

and Arnout in Eiffel, there is an overlap with ten patterns from the AspectJ components. The only difference is 

Iterator and Singleton, while Meyer and Arnout also provide components for Abstract Factory, Builder, Factory 

Method (Creational), Proxy (Structural), and State (Behavioural) [Arnout06, t.1]. This is indeed a close match, 

and a strong indication that the abstractions described by Behavioural patterns are easily implemented in 
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different languages. Common features used by Meyer and Arnout in these patterns include design—by—contract 

invariants, inheritance, generics, and to some extent agents. Features used by Norvig and Sullivan for 

Behavioural patterns primarily include first—class objects, multi—methods, method combination, closures, and 

reflection.  

 

While Hannemann et al. have trouble with Creational patterns, e.g. Abstract Factory, Builder, and Factory 

Method, Meyer and Arnout provide componentization of these patterns as well. Sullivan and Norvig have no 

problems with Creational patterns either, and utilise many of the same features, for example first—class types 

and instantiation and method protocols. Singleton in AspectJ is also implemented using instantiation protocols.  

 

Structural patterns seem to be the classification of patterns that generally causes most problems, regardless of 

the scope of the study in question. Gamma et al. state that Structural patterns rely on a small set of language 

features, namely single and multiple inheritance for patterns with Class scope, and object composition for 

Object scoped patterns [Gamma95, p.219]. This indicates that alternative solutions may be hard to implement. 

Meyer and Arnout only provide componentization of a single Structural pattern, namely Proxy, and Hannemann 

et al. of only two as mentioned above, e.g. Composite and Flyweight. Still, several Structural patterns provide 

very decent implementations according to Hannemann et al. in form of locality and (un—)pluggability, for 

example Adapter, Decorator, and Proxy [Hannemann02, t.1]. In unison, Sullivan and Norvig agree on simpler 

implementations for Adapter, Decorator, Facade, Flyweight, and Proxy. Again, there is an overlap of patterns, 

e.g. Adapter, Decorator, Flyweight, and Proxy. 

 

The examined studies show that languages have great impact on the pattern implementations. The studies by 

Hannemann et al. and Meyer and Arnout also show that implementations can also express many of the desired 

pattern forces, such as Reusability, Interoperability, and Changeability, which are closely related to traditional 

OO concepts.  

4.5. Summary 
Below, we list and then summarise the most important points from this chapter: 

 

 As already noted by Gamma et al., the choice of language will affect the pattern application because 

of inherent language features and the level of support for the patterns. 

 The studies related to dynamic languages examined conclude that dynamic features and reflection 

have a positive impact on nearly all of the “Gang of Four” patterns. 

 The studies related to static languages examined conclude that many of the “Gang of Four” design 

patterns can be componentized.  

 Based on the examined studies and personal experience, we conclude that Java 6 will be useful for the 

evaluation because of its mixture of static and runtime features, but that it is the pattern abstraction 

more so than the language that determines the ease of implementation and componentization. 
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The level of implementation a given pattern can have in a programming language is classified as Invisible, 

Formal, or Informal. Invisible indicates a pattern is so much a part of the language that its usage is not 

noticed by the user. Formal indicates a pattern has an implementation in the language, but must be 

instantiated or called for each use. Informal indicates a pattern is part of a common shared vocabulary and 

referred to by name, but must be implemented from scratch for each use based on its description.  

 

The studies related to dynamic languages examined conclude that dynamic features have a positive impact on 

nearly all of the “Gang of Four” patterns, for example reflection, first—class objects, method combination, 

multiple—dispatch, and higher—order functions. Several of the dynamic features discussed are present in Java 

6, such as reflection, or can be simulated to some extent, for example via dynamic proxies. 

 

The studies related to static languages examined conclude that it is possible to componentize several of the 

“Gang of Four” design patterns, but the language and pattern abstraction will determine if a given pattern 

can be implemented as a component. We believe the success of componentizing a given pattern into a 

language or library depends perhaps more on its abstraction and granularity level than the language in which 

it is implemented. Behavioural patterns seem more manageable compared to Structural patterns, with 

Creational patterns somewhere in between. This indicates support for advanced runtime features will be 

beneficial. Patterns having Class scope are more difficult to work with compared to patterns with Object 

scope. Several of the language features used in the pattern components are present in Java 6, for example 

generics. 
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5. Evaluation Approach 
 

Whenever anyone says, ―theoretically‖,  

they really mean, ―not really‖.  

–– Dave Parnas 

 

Because of the versatility of design patterns and the extensive human interaction required for utilisation, there 

is no straightforward way to benchmark the correlation between patterns and their implementations using test 

frameworks, simulations, or other automated tools. Ideally, applying design patterns require human interaction 

in all phases of the software development life—cycle, including in the final evaluation of the developed system. 

The evaluation approach defined here, however, focuses on the practical application of the ―Gang of Four‖ 

patterns using a given language catalyst. This chapter defines and explains a simple evaluation approach that is 

independent of any given language. It can thus be used in similar evaluations with different language catalysts 

and perhaps different pattern systems providing they are described in the ―Gang of Four‖ format. The goal of 

the evaluation is simply to implement all representative pattern functionality described in the Implementation 

and Sample Code elements for each pattern, if possible, using a single language. The evaluation outcome is then 

reported using a sub—set of the familiar ―Gang of Four‖ format. Using Java 6 as the catalyst, this will allow us to 

perform a reasonably structured evaluation of the entire ―Gang of Four‖ pattern system, because the individual 

implementations must be juxtaposed to identify common traits as well. We start by establishing the focus of the 

evaluation approach before we outline the approach itself. The approach requires both individual and collective 

evaluations of the ―Gang of Four‖ patterns. Once the approach is defined, we use it to state the goals for this 

evaluation using Java 6 as the language catalyst, and we determine the language features that will be used.  

5.1. Focus 
Design patterns are not an exact science. There is no mathematical way to deduce if a pattern is correct or not 

since it is based on empirical knowledge and experience, though several formalisation techniques have emerged 

within the last few years (see for example [Baroni03; Eden04; Taibi07]). The concept of patterns cannot exist 

without human interaction, as patterns are described and interpreted by humans. The idea of a pattern must be 

captured and described by the author (―what does it do?‖); based on it, pattern behaviour and applicability may 

be inferred by the user (―how is it done?‖), but the interpretation will be based on the user‘s point of view. 

Neither part can be excluded. It is hard to speculate upon, which part is easier to evaluate. Evaluating well—

written pattern descriptions and/or implementations could be easier than evaluating pattern abstractions 

because well—written descriptions could be more tangible than the concept they describe. The reverse could 

also be true. The evaluation performed here does not evaluate the validity of the abstractions, merely practical 

issues encountered during application from our point of view. How a user views the pattern will affect the 

application of it, and only through implementation and testing in the given scenario can the desired behaviour 

be confirmed. Because of the human factor and the versatility of patterns, there is no straightforward way to 

benchmark patterns using test frameworks, simulations, or other benchmarking tools. To evaluate patterns is to 

implement them from a specific point of view, which is what the evaluation approach conveys. This implies that 

any evaluation of patterns will be subjective and that its conclusions must adhere to the initial point of view and 
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interpretation. Hence, the goals of the evaluation can only make sense if the viewpoints used are established 

and explained.  

 

Example 5.1 –– To illustrate how different points of views can affect the evaluation, consider evaluating a 

car, say an Aston Martin, for some magazine from the point of view of a mechanic and from the point of view of 

the owner. The mechanic may approach the evaluation in a technical fashion, focusing on the design of the 

engine, e.g. engine performance. The evaluation could investigate different parts of the engine in turn, e.g. 

specific criteria, and comment on issues deemed relevant by the mechanic, as well as state a conclusion to the 

overall performance. The conclusion might be that the engine is inferior to a car in its price range. Furthermore, 

certain issues could be independent of the specific engine (and car), and related to the general design of a 

combustion engine. The owner of the car could instead evaluate the car based on its physical design compared 

to other cars, perhaps focusing on the front, rear, interior, etc. The subjective conclusion could be that the car 

is the most beautiful one. The result is two evaluations of the same car with completely different results, one 

negative, and one positive. For others to use the evaluations to anything meaningful, the premise, e.g. point of 

view, and the specific criteria used must be known. The point of view alone is not enough, because different 

criteria could be used for the same point of view. For example, a vaguely formulated criteria such as ―How 

durable is it?‖, where it thus means engine or car design depending on the viewpoint, yielding a positive 

evaluation for the design of a combustion engine, whereas car designs traditionally have a much shorter 

lifespan, i.e. less durable ■ 

 

The general idea is that the evaluation and pattern implementations as a whole must try to express the Gamma 

et al. themes and concepts described in section 2.1 on page 13. This makes sense because the individual 

patterns by definition must express the themes and concepts regardless of the language used. Determining if 

this is indeed the case is not easy. However, if we assume that the individual patterns as described by Gamma et 

al. express the desired properties, then their implementation should as well. By trying to implement all 

functionality described in the Implementation and Sample Code pattern elements, the pattern implementations 

attempt to express the largest possible set of desirable pattern qualities. These pattern elements are chosen 

because they explicitly focus on the practical application in context of specific languages and features. The 

contained information can rather easily be compared to other languages. The focus is on the practical use of the 

programming language to implement the design patterns, not on how the features are constructed internally.   

 

The focus of the evaluation is practical and applied from the perspective of a practising designer and/or 

developer. The ―Gang of Four‖ patterns should be used in a realistic, varied, and a practical manner. This 

requires an ―application‖ of some size and complexity. In our view, this will produce much more realistic 

pattern applications than merely isolating individual pattern implementations in trivial shell—like 

implementations; such implementations are plentiful to be found on the Internet. Our evaluation contains no 

enervating ―Dogs and Cats‖ examples; this is a Master‘s Thesis, not a petting zoo . As such, the evaluation 

merits rather advanced and complex implementations.  
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5.2. Description 
The approach demands that all implementation issues related to pattern functionality described in the 

Implementation and Sample Code elements in the ―Gang of Four‖ patterns must be addressed, and if possible, 

provide a solution in the language catalyst. It is sufficient to refer to similar solutions in other patterns, but the 

features used must in any case be established. As both the implementation and the selection of features used 

may be determined by the evaluator, the evaluation and its conclusions will be subjective. The detailed 

evaluation of the solutions in the given language must be expressed using the Name, Intent, Structure, 

Participant, and Implementation elements from the ―Gang of Four‖ pattern format. This includes at least an 

UML Class diagram in the Structure element and identification of the pattern participants expressed in the 

solutions. While familiar pattern elements are used to describe the evaluation outcome, the contents are much 

more detailed and specific compared to the ―Gang of Four‖ pattern descriptions. The comparative evaluation 

must identify common traits in the pattern implementations and establish where various features are used and 

what their purposes are. Common traits include both pattern and language behaviour. The format of the 

comparative evaluation is not defined since it is completely dependent of the language and features 

investigated. It must be defined by the evaluation in question. 

5.3. Evaluation Goals 
The purpose of the evaluation is to investigate how the use of languages features indigenous to Java 6 can affect 

application of the ―Gang of Four‖ patterns, individually and collectively. As the whole concept of pattern 

correctness and behaviour is so elusive, the evaluation and its conclusions will be subjective. Hence, the 

objective is not to provide a definitive conclusion as this goes against the very idea of design patterns. Instead, 

the objective is to provide a realistic, but subjective, evaluation, which may be useful in disclosing how the 

―Gang of Four‖ patterns and Java 6 can cooperate. The goal is not to establish that a given pattern should be 

implemented using a set of specific features, but to illustrate that a given set of features may be useful in the 

application of the pattern.  

 

In order to perform a reasonably structured evaluation of the entire ―Gang of Four‖ pattern system using Java 6, 

we use the defined approach to implement all representative pattern functionality described in the 

Implementation and Sample Code pattern elements (in compliance with sub—goal II from the introduction). For 

each pattern, the outcome of the detailed evaluation will thus be (sub—goal III and IV): 

 

 An introduction to the pattern, describing it using the participants and wording found in [Gamma95] 

(described in Name, Intent, and Participants elements);  

 A simple description on how the pattern is implemented in this thesis, relating in particular the pattern 

participants to implementation entities (Participants and Structure); 

 A detailed UML Class diagram of the implementation, where pattern participants and behaviour are 

clearly identifiable (Structure); and 

 An explanation of how all information in the Implementation and Sample Code elements has been 
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addressed and possibly solved (Implementation). 

 

The outcome of the comparative evaluation will be (sub—goal IV):  

 

 A schematic presentation describing the use of Java 6 features in the pattern implementations;  

 A thorough, comparative analysis on the use of the investigated features, including examples, program 

listings, and in—part conclusions and identification of representative high—lights; 

 A comparative analysis between the pattern relationships described by Gamma et al. and relationships 

expressed in the evaluation; and 

 A casual classification on the level of pattern support Java 6 has based on the evaluation outcome. 

 

The comparative evaluation is presented in chapter 7, while the detailed evaluations are presented in chapter 

8. Furthermore, based on all evaluation results, overall evaluation conclusions will be made in chapter 9. 

5.3.1. Features 

As the last thing before we can conduct the evaluation, we need to select the set of features to investigate. A 

fixed set is a necessity to keep the evaluation focused, but it must be realistic. Excluding interfaces, for 

example, is not an option. The following core features will at least be investigated: type usage (classes, 

enumerations, interfaces, abstract classes, and exceptions), implementation and inheritance, generics and 

generic methods, inner and anonymous classes (closures), covariant return types, and varargs. Many of these 

features have similar constructs in C++, such as classes, generics, and covariant return types (for virtual 

functions [Stroustrup91, p.647]), while others do not, such as generic methods and anonymous classes. Many of 

these features are given, as writing any form of code in Java would otherwise not be possible. These features 

also encompass many of the Eiffel features used in the study by Meyer and Arnout from section 4.3.4. 

 

As the related work examined in section 4.2 all concluded that runtime dynamic features aid in the application 

of the ―Gang of Four‖ patterns, it is obvious to examine the use of Java‘s reflective capabilities in this 

evaluation. Reflective usage of class literals, constructors, and methods is examined, as well as dynamic proxies 

that allow a type at runtime to implement a given interface using reflective methods for dispatching. The use of 

annotations is also examined, especially when used reflectively at runtime. These features cannot be matched 

by C++, but Smalltalk possesses several similar features. Numerous ―Gang of Four‖ descriptions illustrate or 

discuss pattern functionality relying on runtime features that cannot be directly implemented in C++, for 

example using classes to create objects in Abstract Factory [Gamma95, p.90-91] and Factory Method [Gamma95, 

p.112], or changing the class of an object runtime for State behaviour [Gamma95, p.309]. 

 

Java‘s built—in mechanisms for synchronisation, serialization, and cloning are also examined. C++ cannot match 

these mechanisms either. 

 

The comparative evaluation will provide short descriptions of the relevant features where deemed necessary. 
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5.4. Summary 
Below, we summarise the most important points related to the defined evaluation approach and its practical use 

in this thesis:  

 

 The evaluation approach has a practical and experimental approach and investigates if a given 

language catalyst can express all representative pattern functionality described in the 

Implementation and Sample Code elements. Whether or not specific functionality can be implemented 

using the language catalyst must be documented. 

 The evaluation approach requires detailed and comparative evaluations. Detailed evaluations are 

more structured and express evaluation outcome using the familiar Intent, Structure, Participants, and 

Implementation elements from the ―Gang of Four‖ format. The comparative evaluation identifies 

common traits pertaining to pattern and language behaviour.  

 The evaluation goals include a schematic presentation of the pattern  feature usage and an in—

depth comparative language feature analysis of core language features, reflection, and special 

language mechanisms. 

 The evaluation goals also include a comparative analysis between the pattern relationships described 

by Gamma et al. and relationships expressed in the evaluation and a casual classification on the 

level of pattern support in Java 6 based on the evaluation outcome. 

 

The evaluation tries to express the themes and concepts described by Gamma et al. as realistic as possible. 

The pattern implementations will be non—trivial, and all relate to a few common model classes to convey the 

sense of a stand—alone ―application‖. This requires more effort on behalf of the reader. On the other hand, we 

will strive to produce better and fully documented program code. The implementation in Java 6 will try to 

express “Best Practices” as described by Bloch [Bloch01].  

 

The objective of the evaluation is to provide a subjective investigation, not a definitive conclusion as this 

goes against the very idea of design patterns. The evaluation may help identify how the “Gang of Four” design 

patterns and Java 6 can cooperate by illustrating how a given set of features may be useful in the 

application of a pattern. Three categories of features will be examined: core language features, reflective 

capabilities, and special language mechanisms. Core language features include types, generics, closures, 

covariant return types, and varargs. Reflective capabilities include class literals, methods, dynamic proxies, 

and annotations. Special language mechanisms include synchronisation, serialization, and cloning. 
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6. Implementation 
 

 LDX #$00     

loop: LDA data,X 

 STA $0400,X  

 INX  

 CPX #$0A  

 BNE loop 

 RTS 

 data:.BYTE $03,$36,$34,$20,$34,$05,$16,$05,$12,$21 
–– Gunni Rode 

 

This chapter presents the practical details regarding the pattern implementations. We present the environment 

set—up used for the evaluation, including precise Java version and IDE. Since UML cannot describe all Java 

features, we explain the UML extensions defined and used during the evaluation to aid the construction of UML 

Class diagrams. To simulate a larger ―application‖ than standalone pattern implementations can achieve, we 

present the core model classes used directly or indirectly in all pattern implementations. The developed source 

code and documentation is available on the thesis website; here, we only present a package overview. Finally, 

we describe how the pattern implementations can be executed and tested.  

6.1. Software 
JDK 1.6.0_01 is used with compiler compliance to version 6. The JDK is available for download at 

http://java.sun.com/javase/downloads/index.jsp. JavaDoc is used to document the source code and is bundled 

with the JDK. The standard doclet is used with a compliance level to version 6.  

 

Eclipse 3.3 (Europa) is used as the main IDE. It is available at http://www.eclipse.org/downloads. NetBeans 

5.5.1 from Sun is used as the secondary IDE since Eclipse utilises its own compiler. To ensure compatibility with 

the standard compiler, NetBeans is used to verify compilation – the compilers do not behave exactly alike. 

Known issues are documented with //ISSUE:. NetBeans is available for download at http://www.netbeans.org. 

There is a single compiler error in NetBeans in the bridge.SequenceAbstraction<E> class, line 305, but it 

does not concern core pattern functionality. In our opinion, it is a compiler bug (well, at least in one of the 

compilers…). There are no problems in Eclipse.  

 

A deliberate choice is that no plug—ins for Eclipse or NetBeans are required, not even JUnit. The OS used during 

development is Microsoft XP Professional, SP2. 

6.2. Modelling 
Each pattern implementation is only illustrated with an UML Class diagram, similar to the Class diagram shown in 

figure 6.1 on page 76. Standard UML notations are not described here, but UML cannot describe all Java 

features, such as final methods, annotations, or genetic bounds. Fortunately, it is extensible. Additional data 

types, stereotypes, and attributes are thus defined and used as explained below in table 6.1.  

 

Packages are rarely depicted. If so, it is only to illustrate a clear separation between patterns and/or classes. 

http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads
http://www.netbeans.org/
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Types include attribute and operation (constructor and method) information as deemed necessary. Two dots (..) 

indicate additional attributes/operations not depicted. Open—ended sub—classes are generally not depicted, but 

implied. All Class diagrams use Java types for clarity, pictured with their fully qualified generic name such as 

java.util.List<E>. All types defined in this thesis are presented by their simple generic name, such as 

Sequence<E> for dk.rode.thesis.meta.model.Sequence<E>. Inner classes are qualified by their 

enclosing class, for example Sequence.State. Parameterised type realisations are depicted with rounded 

corners («bind» relations), which is a deviation from the UML standard. Realisations from type parameter E to E 

are not illustrated, only when bound to a concrete type such as java.lang.Integer, or to a type parameter 

with a different name, e.g. E to T. Bounds on type parameters use Java syntax, like E extends T, E super 

S, or even wild—cards like ? super E. All this is illustrated in figure 6.1 on page 76. Comments are light grey. 

 
 

Table 6.1 — UML stereotypes and properties 
 

Name 
 

Description 

«static class» Indicates a static inner class. 

«enumeration» Indicates an enumeration, depicted like a class, but with enumeration constants before 
attributes.  

«final class» Indicates a final class. 

{final} A property indicating a final attribute or method. 

«exception» Indicates an exception type. 

«throws» Indicates a relationship via a thrown exception. 

{exception} Indicates a method that might throw an exception as {exception = type}. 

«annotation» Indicates a Java annotation type. Depicted like a class, using this stereotype. 

«annotated» Indicates a realisation of an annotated type. The non—default fields of the annotation are 
bound like type parameters, for example «annotated» name::value, .. 

{synchronised} A property indicating that a given method is synchronised, alternatively {synchronised = lock}. 

{unmodifiable} A property indicating that an object is unmodifiable, e.g. read—only.  

 

The UML Class diagrams identify the pattern participants in a manner similar to a format suggested by Vlissides, 

one of the ―Gang of Four‖ authors. Here, a participant is identified by a dark blue rectangle containing the 

participant name in the upper left corner of the type.  

6.3. Design 
All pattern implementations in this evaluation relate to a few common model classes defined in the 

dk.rode.thesis.meta.model package. This is part of the deliberate design choice to simulate larger and 

more complex applications than could be achieved by disjoint stand—alone pattern implementations, but also to 

keep the project within reason, time and development wise. Individual implementations can thus be used in 

other pattern implementations as well, expressing many of the pattern relationships described by Gamma et al. 

The primary type is the Sequence<E> interface, which represents a sequence that will deliver the next, or 

current, value in given sequence on demand, such as for example a Fibonacci sequence or a sequence delivering 
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the names of the Simpsons family members. Sequences are more than mere iterators; they are value centric and 

have a number of interesting properties that makes them useful in an evaluation such as this. Sequences always 

have a lower bound, i.e. the initial sequence value, and may have an upper bound, limiting the number of 

possible values it can deliver. If a sequence is bounded and deliver consistent values, it will restart when the 

upper bound is reached on an invocation of next(), i.e. the same values will be delivered again, in order. The 

sequence values of bounded, consistent sequences are thus deterministic: two instances of the same sequence 

type initialised identically will return the same sequence values if utilised in the same manner. Sequences may 

also deliver unique values until reset or restarted. Sequences can be reset explicitly, which will cause the 

sequence to restart if it is consistent. The complete Sequence<E> interface is illustrated in figure 6.1, 

including closely related types, but please refer to the JavaDoc for an in—depth description.  

 

A given pattern implementation will either use or implement sequence functionality, but the Sequence<E> 

type is often merely a catalyst to make the implementation and evaluation concrete. The Abstract Factory 

implementation, for example, provides a reusable factory that can create any type of product, but the products 

created are sequence related. Other implementations are more entangled with sequence functionality. The 

implementation of the State pattern is a sequence implementation delivering prime numbers, where each 

concrete state represents internal sequence functionality, such as calculating prime numbers, delivering the 

next prime number, restarting the sequence, etc. Usage includes the Adapter implementation, which adapts the 

Sequence<E> interface to the java.util.Iterator<E> interface via composition, and the Interpreter 

implementation, which evaluates expressions that directly or indirectly manipulate sequences.  

 

Arguably, the choice to centre all pattern implementations on a few core model types may seem contrived. 

There is no guarantee that ―one—size—fits—all‖, especially considering the scope of this thesis. The evaluation 

of design patterns from a practical point of view requires a real context to be truly educational. Through real, 

practical application of a pattern using a given language will the connection between the two become apparent. 

Design patterns should be applied only where relevant. A design forcing the use of certain design patterns is not 

only contrived, it goes against the very idea of design patterns. An evaluation like this one can only try to 

imitate a real context. It has no choice but to implement each pattern within that context as it is the very 

purpose of the evaluation. On the other hand, sequence functionality as described above is generic enough to 

allow for many different applications of it, which we think the evaluation demonstrates. It helps convey the idea 

of an overall ―application‖. At first glance, a general impression of the design and implementation as whole 

could be that it suffers from featuritis, but this is in fact not the case. On the contrary, reusing common 

components such as sequences allow individual pattern application to become focused, added only what is 

needed while still participating in non—trivial overall implementations. Accordingly, several pattern 

implementations define sub—interfaces of Sequence<E> to express the required functionality, and such types 

represent the focus of the given pattern implementation. Examples include Composite, Observer, and Visitor 

that defines the composite.CompositeSequence<E>, observer.ObservableSequence<O,A,E>, and 

visitor.TypeVisitableSequence<E> interfaces, respectively. The actual implementations need only be 

concerned with specific pattern functionality as general sequence functionality can be reused or inherited. 
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Figure 6.1 — Primary model classes 

 

6.4. Source Code 
Table 6.2 lists the packages containing the developed source code. Approximately 300+ Java files have been 

developed, yielding approximately 400+ class files (including inner classes and enumeration constants). All types 

are fully documented using JavaDoc, including packages. The source code can be downloaded from the thesis 

website at http://www.rode.dk/thesis. 

http://www.rode.dk/thesis
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The reader of this thesis is expected to browse the generated JavaDoc to get a better understanding of the 

different implementations. The primary implementation of each pattern is implemented in each own aptly 

named package, e.g. dk.rode.thesis.abstractfactory for Abstract Factory. A given pattern 

implementation may naturally be utilised by other patterns, and additional applications of a given pattern may 

be present in the source code as well, for example anonymous classes used as on—the—fly adapters. Several 

Meta packages and classes have been developed to aid the individual pattern implementations. An example is 

the dk.rode.thesis.meta.model package as described in the previous section, or the 

dk.rode.thesis.meta.reflect package that supplies the core reflection functionality used in different 

pattern implementations. They are listed in grey cells in table 6.2 below. Refactoring common code into Meta 

classes is also a good design choice in compliance with traditional OO concepts instead of implementing 

everything from scratch in each pattern implementation. It is the contents of each ―pattern package‖ that are 

evaluated in chapter 8, but Meta class functionality will be included if it is essential for the pattern 

functionality.  

 
 

Table 6.2 — Source code packages 
 

Package 
 

Description 

dk.rode.thesis.abstractfactory Implementation of Abstract Factory. 

dk.rode.thesis.adapter Implementation of Adapter. 

dk.rode.thesis.bridge Implementation of Bridge. 

dk.rode.thesis.builder Implementation of Builder. 

dk.rode.thesis.chainofresponsibility Implementation of Chain of Responsibility. 

dk.rode.thesis.command Implementation of Command. 

dk.rode.thesis.composite Implementation of Composite. 

dk.rode.thesis.decorator Implementation of Decorator. 

dk.rode.thesis.facade Implementation of Facade. 

dk.rode.thesis.factorymethod Implementation of Factory Method. 

dk.rode.thesis.flyweight Implementation of Flyweight. 

dk.rode.thesis.interpreter Implementation of Intepreter. 

dk.rode.thesis.iterator Implementation of Iterator. 

dk.rode.thesis.mediator Not implemented (but evaluated). 

dk.rode.thesis.memento Implementation of Memento. 
 

dk.rode.thesis.meta 
 

Annotations to identify and classify pattern participants.  
 

dk.rode.thesis.meta.log 
 

The log framework used. 
 

dk.rode.thesis.meta.model 
 

The core model used as the base for all patterns. 
 

dk.rode.thesis.meta.reflect 
 

Reflection utilities. 
 

dk.rode.thesis.meta.reflect.proxy 
 

Dynamic proxy utilities. 
 

dk.rode.thesis.meta.test 
 

Defines the test setup. 
 

dk.rode.thesis.meta.util 
 

Various general utilities. 

dk.rode.thesis.observer Implementation of Observer. 
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Table 6.2 — Source code packages 
 

Package 
 

Description 

dk.rode.thesis.prototype Implementation of Prototype. 

dk.rode.thesis.proxy Implementation of Proxy. 

dk.rode.thesis.singleton Implementation of Singleton. 

dk.rode.thesis.state Implementation of State. 

dk.rode.thesis.strategy Implementation of Strategy. 

dk.rode.thesis.templatemethod Implementation of Template Method. 

dk.rode.thesis.visitor Implementation of Visitor. 

 

Each pattern package contains a doc-files folder containing an UML Class diagram for the implementation. 

This ensures that the diagram is included in the generated JavaDoc. The diagrams are included in this thesis as 

well, in the relevant evaluation sections.  

 

In the evaluation, full package names will rarely be used for the developed source code. Package prefix 

dk.rode.thesis is always implied if not already included in a given type name. Once a given type or package 

has been referenced in a context, e.g. section or paragraph, the remaining package information will be ignored 

as well. Example: if the full type name is dk.rode.thesis.composite.CompositeSequence<E>, 

composite.CompositeSequence<E> will suffice, and additional references in the same context will 

thereafter simply reference CompositeSequence<E>. Java types are fully qualified, or go by their simple 

name when referenced again within the same context, as for example java.util.NavigableMap<K,V> and 

NavigableMap<K,V>. 

6.5. Testing 
Each pattern package includes a Main class that will execute the tests devised to illustrate the developed 

pattern functionality, e.g. dk.rode.thesis.abstractfactory.Main. The tests are not meant as a 

replacement for JUnit testing, but to illustrate pattern functionality. They can each be run directly, but the 

dk.rode.thesis.meta.test package furthermore includes two separate test classes, namely AllTests and 

IntegrityTests. The first runs all individual pattern tests in alphabetical order, while the latter perform 

integrity tests on all accessible dk.rode.thesis.meta.model.Sequence<E> implementations defined in the 

individual pattern implementations. Note that certain test files are required to run the Template Method tests 

and that Bridge and Memento, as well as the logger, will write to disk.   

 

To record the outcome of the tests, two types of logs exist: a global log and logs associated with a specific class. 

The output is generally verbose as all objects in the evaluation implement meaningful toString() 

representations as recommended by Bloch [Bloch01, p.42-44]. It is possible to control the log level explicitly in 

the individual tests by altering the source code, of course, but it is easier to supply a proper boolean value for 

the –log argument to each test class, indicating whether or not logs associated with individual classes should be 

activated or not, e.g. java Main –log true. For additional verbose logging, the –log.verbose parameter 
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can be used in a similar fashion. Notice there is no = operator between argument keys and associated values. 

The tests are designed so the global log should suffice to convey the intent.  

 

The logs will output to either System.out or to a file. This is determined by the system property 

dk.rode.thesis.log. A string value of ―file‖, excluding quotation marks, will log to a file in the relative 

directory log; all other values will cause logging to System.out. File logs will append to existing logs. System 

properties are supplied with the –D option during execution, as in java –Ddk.rode.thesis.log=file 

Main –log true. Notice the use of = unlike normal supplied arguments. 

6.6. Summary 
We have implemented the “Gang of Four” patterns in Java 6, fully documented with JavaDoc. The source 

code expresses the “Best Practices” described by Bloch [Bloch01] whenever possible. Each specific pattern 

implementation has a dedicated package, but may be used in other pattern implementations as well. All 

implementations basically operate on the same core model classes to simulate ―application‖ usage. 

Additional use of the “Gang of Four” patterns is applied where warranted, for example in Meta classes or as 

part of another pattern implementation. Test classes have been developed to illustrate pattern usage. 
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7. Comparative Evaluation 
 

Program testing can be used to show the presence of bugs, 

 but never to show their absence! 

–– Edsger W. Dijkstra 
 

The comparative evaluation provided in this chapter presents an analysis of the pattern implementations that 

correlate patterns based on the Java 6 features and mechanisms used in their application. Three categories of 

Java 6 features are examined: core language features (types, generics, inheritance, etc.), reflection (class 

literals, dynamic proxies, annotations, etc.), and special language mechanisms (synchronisation, serialization, 

cloning, etc.). The core language features category primarily encompass static features, the reflection category 

primarily runtime features, while special language mechanisms category targets both. Based on the analysis, we 

provide observations on how C++ features used to implement core pattern functionality can be implemented in 

Java 6. We also present a schematic illustration of the pattern relationships expressed in the implementations, 

comparing them to the relationships described by Gamma et al. We furthermore outline traits of each pattern 

implementation in relation to pattern implementation levels as described by Norvig [Norvig96, p.7].  

7.1. Language Features 
Table 7.1 on page 82 summarises the most important language features and mechanisms applied in the 

implementations of the ―Gang of Four‖ patterns. For comparison, pattern application and features utilised in 

developed Meta classes are also illustrated. A set of legends is used to describe the feature use in the specific 

pattern implementations. Regardless of the legend used, an entry in the table indicates that the feature was 

somehow used in the pattern implementation. The most interesting representative pattern functionality and 

feature combinations are highlighted with a dark—blue background. They are addressed individually in section 

9.2, after the general feature usage has been investigated. The legends are: 

 

 X: the feature is used directly in the pattern implementation. For example, the Singleton pattern uses 

inheritance to allow specialisation of singleton types in the singleton package, and the legend used 

for the Singleton  Inheritance table entry is thus X. 

 P: the feature is used to implement the pattern functionality in another Pattern implementation 

because of the close relationships between patterns. For example, anonymous inner classes are used to 

define concrete adapter strategies in the Apapter implementation in the adapter package, but the 

actual Strategy implementation in the strategy package uses enumerations to define concrete 

strategies. Hence, P is used as the legend for the Strategy  Inner classes table entry (P thus refers to 

Adapter). 

 M: the feature is used in Meta classes essential for the pattern implementation. This is a design issue 

related to refactoring performed during the evaluation: had the feature not been used in the Meta 

classes, it would have been used directly in the pattern implementation. For example, class—like 

adapters are not implemented directly in the Adapter pattern package, but class—like adapters 
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facilitated by dynamic proxies are used extensively in the meta.reflect.proxy.ProxyFactory 

Meta class. M is therefore used as the legend for the Adapter  Dynamic proxies table entry. 

 E: the feature is only used in classes External to the core pattern participants described by Gamma et 

al., but such classes are still implemented in the specific pattern package. For example, the Command 

pattern implementation includes the command.CommandProcessor class, which is not described by 

Gamma et al., but by the ―POSA‖ Command Processor [Buschmann96, p.277] pattern. As only the 

processor implementation use generic methods, and not the actual command.Command<E> types 

themselves, the legend is E for the Command  Generic Methods table entry. 

 D: the feature is Derived because it depends on the design of other patterns and/or classes. Had the 

used classes not utilised the feature, the pattern implementation would (probably) not have used it 

either. This is the only legend that counts as a ―maybe‖. For example, the Decorator pattern uses 

generics because the decorated type is the generic meta.model.Sequence<E> type. Hence, the table 

entry Decorator  Generics is labelled D. 

 

Functionality ―inherited‖ from other patterns is not included in table 7.1. For example, most pattern 

implementations in some form or another operate on the Meta model classes, in particular the Sequence<E> 

interface. As this interface extends the prototype.StrictCopyable<T> interface to become a prototype, 

most Sequence<E> implementations will use covariant return types to specify the precise type of sequence 

from the inherited copy() method. This is registered for the Prototype pattern, but not for other patterns that 

use covariant return types for this purpose only. 

 

Sections 7.1.1 – 7.1.3 discuss the observed use of features in more detail. The program listings all represent 

actual program code, albeit truncated as needed. Several listings represent multiple features, but will be 

presented in the section deemed most relevant; some cross—referencing is thus required. Table 7.1 and the 

summaries presented really cannot stand alone. When reading this chapter, the evaluation chapters for each 

pattern will in all likelihood frequently have to be consulted because of the large amount of information that 

has to be described: patterns, participants, features, etc. Consulting the JavaDoc is not a bad idea either. 

7.1.1. Core Language Features 

This section describes the core language features used in the various pattern implementations. Java has many 

features in common with C++, lacking some, but also provides others not found in C++.  

7.1.1.1. Inheritance, Abstract Classes, and Interfaces 

The evaluation differentiates between (abstract) class—based inheritance and interface implementation. 

Standard use of polymorphism and inheritance is not explicitly addressed, as it is fundamental in any OO design. 

Inheritance is included only if it is part of the core pattern functionality as for example the Template Method 

pattern; this is also true for interfaces and abstract classes. In our experience, abstract classes have a slightly 

different purpose in Java compared to similar C++ designs: in Java, abstract classes often implement the basic 

traits of an interface for convenience while C++ use (abstract) classes for implementation inheritance.  
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Table 7.1 — Use of Java 6 features in the ―Gang of Four‖ pattern implementations 
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X: used directly in a pattern participant; P: used as part of another pattern implementation; M: used in Meta 

classes; D: derived usage; E: used in related, but non—participant, classes; dark—blue squares: high—lights. 
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Bloch denotes such abstract classes as skeletal implementations [Bloch01, p.85]. This kind of usage is because 

Java does not support multiple (functional) inheritance, and interfaces are the way to define mixin types, but 

only publicly [Bloch01, p.84]. Forcing clients to inherit a class limits the sub—class from inheriting other classes, 

which can be problematic. Abstract classes are not used very much in general APIs, such as the Java libraries, 

unless they represent implementation inheritance reminiscent of C++ or if used in frameworks for call—backs, 

handlers, etc. The distinction is that frameworks offer a more controlled environment, and using abstract 

(skeletal) classes allows the default implementation to change (almost) without violating the contract, for 

example adding a new method [Bloch01, p.88]. Interfaces do not have this advantage. More so, it is not possible 

to use more than a single (abstract) class as a generic bound, while any number of interfaces can be used. Even 

more exotically, classes cannot be used to construct dynamic proxies, only interfaces as described in section 

7.1.2.4. On the plus side counts that it is possible to invoke abstract methods from the constructor in Java, 

which is not possible in C++ because of multiple inheritance [Stroustrup91, p.582]. This is utilised in the 

Template Method implementation as illustrated in listing 7.13 on page 100. However, this feature has to be used 

with caution because sub—classes will not have been fully initialised yet [Bloch01, p.80], but in a controlled 

design like the Template Method, it generally works fine. Furthermore, as explained in section 7.1.2.1 on page 

102, advanced reflection techniques can be used to determine if a given method is being invoked as part of the 

super—class initialisation process or because of ordinary use, which is utilised in the Bridge implementation.  

 

Java and C++ share the access modifiers public, protected, and private, but use them a bit differently. Access 

modifiers influence inheritance and implementation as they are used to enforce information hiding. Java also 

supports packages and package private access, which is utilised in the Facade implementation. Compared to 

C++, packages also influence the use of the protected access modifier. Public and protected members are 

inherited in both C++ and Java, but C++ allows private implementation inheritance. Very little core pattern 

functionality described by Gamma et al. depends on multiple inheritance, but Adapter (private) and Observer 

(public) do. A couple of canonical pattern implementations use friends, such as Memento and State. In Java, 

composition must be used, perhaps combined with public mixin interfaces, and package private access or inner 

classes may be able to solve certain issues. The Memento implementation defined in this evaluation rely on 

public interfaces and delegation, but it also enforces dynamic access checks at runtime to identify the caller as 

illustrated in listing 7.26 on page 120. 

 

In the evaluation, the abstract flyweight.AbstractCharacter class in the Flyweight implementation is just 

a convenience class that does not define any abstract methods, but simply implements the basic traits of the 

flyweight.Character interface; it is a skeletal implementation. Conversely, in the Command 

implementation, the command.SequenceCommand<E> class supplies needed undo functionality common to all 

commands based on mementos and defines abstract methods. In the Factory Method implementation, the 

factorymethod.CommandCreator<E,T> is an abstract class that defers the instantiation of the products to 

the sub—class as described by Gamma et al. [Gamma95, p.107]. This is illustrated in listing 7.1 below. 
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Listing 7.1 — Abstract classes in Factory Method 
 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

 

public abstract class CommandCreator<E,T> { 

 

  protected CommandCreator() {..} 

 

  public final Command<E> getCommand(Sequence<E> sequence, T token) { 

    .. 

    try { 

      if ((command = this.create(sequence, token)) != null) { // call sub-class implementation 

        out.println("Created command: ", token, " -> ", command); 

      } 

    } catch (Exception e) { 

      out.warn("Command creation failed: ", token, " -> ", sequence).warn(e); 

      // fall-through 

    } 

    if (command == null) { 

      if ((command = this.createDefault(sequence)) != null) { // call possible sub-class implementation 

        .. 

      } 

      .. 

    } 

    return command; 

  } 

 

  protected abstract Command<E> create(Sequence<E> sequence, T token) throws Exception; // abstract factory method 

 

  protected Command<E> createDefault(Sequence<E> sequence) throws Exception { // hook operation 

    return new NullCommand<E>(); 

  } 

  .. 

} 

 

Whether or not a given abstract class is truly needed is often a judgement call, as is the case with the Builder 

and Bridge implementations. The use of abstract classes is therefore generally more restricted and interface 

implementation, object composition, and delegation is often the viable alternative in Java. Bloch claims that 

interfaces should be preferred to abstract classes [Bloch01, p.84-88], which corresponds well with the Gamma et 

al. themes from section 2.1.2. The pattern implementations authored in the evaluation try to express this. An 

example of interface and inheritance usage is supplied in listing 7.2, taken from the Flyweight implementation. 

 
 

Listing 7.2 — Interface usage in Flyweight 
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public interface Textual<T> extends CharSequence, Comparable<E> { 

  public String lowerCaseFirst(Locale locale); 

  public String upperCaseFirst(Locale locale); 

  .. 

} 

 

public interface Character extends Textual<Character>, Stringable<Character> {..} 

 

public abstract class AbstractCharacter implements Character { // implements basic traits of Character 

 

  protected AbstractCharacter() {..} 

   

  public String lowerCaseFirst(Locale locale) { 

    return Strings.lowerCaseFirst(this, locale).toString(); // as Character extends Textual that extends CharSequence 

  } 

  .. 

} 

 

public class Letter     extends AbstractCharacter {..} 

public class Symbol     extends AbstractCharacter {..} 

public class Whitespace extends AbstractCharacter {..} 

 

public class Word extends ArraySequence<Character> implements Sequence<Character>, Iterable<Character>, Textual<Word> { 

 

  public String lowerCaseFirst(Locale locale) { 

    return this.elements[0].lowerCaseFirst(locale); // elements contains letters in this word 

  } 

  .. 

} 

 

All pattern implementations but the Singleton and Template Method make explicit use of interface functionality. 

Template Method has Class scope and relies on inheritance and abstract classes [Gamma95, p.325]. Common 

interfaces could be implemented by the AbstractClass and ConcreteClass participants, but this would not 
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influence the pattern functionality assuming the abstract operations and hooks were still defined as (abstract) 

protected methods in the abstract class, and not declared in the interface. Otherwise, the protected methods 

would become public, which would violate information hiding. An alternative is to break the tight coupling 

between the AbstractClass and ConcreteClass and make them stand—alone classes that interact through 

composition or delegation, but interface functionality would thus be required. This is true for all patterns 

relying on inheritance. Bloch calls this simulated multiple inheritance, because numerous interfaces can be 

implemented while the work is performed by delegating requests to privately stored objects of proper type 

[Bloch01, p.87]. Sub—classing an internal Iterator as described by Gamma et al. [Gamma95, p.267-270] 

corresponds to a degenerate application of the Template Method, but the internal Iterator implementation 

supplied in the evaluation breaks the tight coupling and uses composition and interfaces instead, to demonstrate 

the alternative as illustrated in listing 7.3.  

 
 

Listing 7.3 — Composition as an alternative to abstract classes in Iterator 
 

01 
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public interface ValueProcessor<E> { 

  public void initialise(); 

  public boolean process(E value); 

} 

 

public class ProcessableSequence<E> extends SequenceDecorator<E> implements Sequence<E> { 

  .. 

 

  public boolean process(ValueProcessor<? super E> processor) { // internal iterator functionality 

    // invariant enforced in constructor 

    IterableSequence<E> sequence = (IterableSequence<E>)this.getSequence(false); 

    sequence.reset(); 

    processor.initialise(); 

    for (E value : sequence) { // language support for external iterators 

      if (!processor.process(value)) { // forwarding 

        return false; 

      } 

    } 

    return true; 

  } 

  .. 

} 

 

As a side note, listing 7.3 above (line 14) as well as listing 7.11 on page 98 (line 7, 12, and 21) illustrate how 

elegantly Java 6 supports iteration over user—defined types, corresponding to external Iterator functionality. 

 

The Singleton pattern relies on sub—classing as well since specialisation of singleton types is rare and far 

between. Defining a common interface was not needed in this evaluation.  

 

Conclusion –– As expected, the evaluation shows that interface implementation combined with composition is 

used in favour of class—based inheritance. Behaviour expressed with multiple and/or private inheritance in the 

canonical C++ examples by Gamma et al. can be achieved with mixin interfaces, composition, and delegation, 

though only publicly. The lack of private inheritance in Java actually promotes composition in the pattern 

implementations where applied.  

7.1.1.2. Generic Types and Methods 

There are two main uses of generic types in this evaluation, which we have dubbed static and dynamic usage. 

Static usage implies compile—time behaviour, inheritance, and/or implementation, while dynamic usage implies 

a close relationship with runtime behaviour, but neither is exclusive. Static usage is to implement or use a 
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generic type with a compile—time known type parameter, for example class SimpsonsFamilySequence 

implements Sequence<java.lang.String>, while dynamic usage could be to instantiate a generic type 

with a specific type at runtime, for example new StatelessSingletonRegistry<Sequence<String>>, or 

use the generic information in other ways, e.g. class literals. Compile—time bounded types are also considered 

dynamic usage because the exact type must still be supplied at runtime. The Factory Method implementation 

employs both types of usage. Consider the abstract factorymethod.CommandCreator<E,T> class illustrated 

in listing 7.1 on page 84. It expects concrete sub—classes via inheritance specify the type of token, T, used to 

identify the concrete command.Command<E> types to create, for example a command.NextCommand<E> 

based on a specific instance of T. The actual type of T is thus available in the factory method implementation in 

the CommandCreator<E,T> sub—class at compile—time, unless the sub—class is generic with respect to T as 

well. However, that makes little sense, as it would make it difficult to use T to anything meaningful during the 

creation process. Below, listing 7.4 illustrates two specific CommandCreator<E,T> sub—classes that supply 

the expected compile—time type of T. As the type of T, the factorymethod.SequenceCommandCreator<E> 

uses the meta.model.Sequence.State type, and line 9 illustrates that the State type is available at 

compile—time as part of the factory method signature to identify the Command<E> types to create. At runtime, 

the type parameter E of SequenceCommandCreator<E> is bound to the type parameter E from 

CommandCreator<E,T>, which is bound to the type parameter E from Command<E>. This is a dynamic binding 

that allows the same SequenceCommandCreator<E> class to create different types of parameterised 

commands as illustrated in line 15 and 17. Had it employed a static binding of E as well, only commands 

matching the static binding of E could have been created, which is clearly less flexible. 

 
 

Listing 7.4 — Static and dynamic usage of generics in Factory Method 
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public abstract class CommandCreator<E,T> { // E = dynamic, T = dynamic 

  public final Command<E> getCommand(Sequence<E> sequence, T token) {..} 

  protected abstract Command<E> create(Sequence<E> sequence, T token) throws Exception; // abstract factory method 

  .. 

} 

 

public class SequenceCommandCreator<E> extends CommandCreator<E,State> { // E = dynamic, T = static 

 

  protected Command<E> create(Sequence<E> sequence, State state) throws Exception { // T = known at compile-time 

    if (state == null) { 

      return null; // super 

    } 

    switch (state) { 

      case NORMAL: 

        return new NextCommand<E>(sequence); // E = unknown at compile-time 

      case RESET: 

        return new ResetCommand<E>(sequence); // E = unknown at compile-time 

      default: 

        return null; // super 

    } 

  } 

  .. 

} 

 

public class ReflectiveCommandCreator<E>  

     extends CommandCreator<E,TypeLiteral<? extends Command<E>>> { // E = dynamic, T = static, but dependent of E! 

 

  protected Command<E> create(Sequence<E> sequence, TypeLiteral<? extends Command<E>> type) throws Exception {..} 

  .. 

} 

 

In the listing above, line 26 shows that the factorymethod.ReflectiveCommandCreator<E> class has a 

dependency between E and T because the static T type is generic with respect to the runtime type of E. T is 

represented by a type literal representing any sub—class of the generic type Command<E>, e.g. 

meta.reflect.TypeLiteral<? extends Command<E>>. This is a powerful way to correlate reflectively 
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created generic commands with the actual type of E in a type safe manner; something class literals alone cannot 

achieve because of type erasure. The use of type literals is described in detail in section 7.1.2.1 on page 102, 

but they themselves depend on static usage to ensure the type information is present at runtime. The Factory 

Method example illustrate that the choice of static and/or dynamic usage of generics is a design choice, but 

often a choice that is highly influenced by inter—class relationships. Here, the static usage of T allows the same 

abstract CommandCreator<E,T> class to work in a type—safe manner for any type of sub—class, while still 

allowing runtime parameterisation of E for the created products. Static usage of T to identify products can be 

used in any factory implementation, but dynamic usage of E is a consequence of the product type being generic, 

e.g. Command<E>. 

 

All but the Facade implementations employ generics, but several patterns do so only because they operate on 

genetic model types. This corresponds to a D legend in table 7.1 on page 828. The patterns are Adapter, Bridge, 

Builder, Command, Composite, Decorator, Flyweight, Interpreter, Memento, State, and Template Method. In a 

different evaluation, they could as easily provide implementations that do not use generics. Conversely, 

Abstract Factory, Chain of Responsibility, Factory Method, Iterator, Observer, Prototype, Proxy, Singleton 

(registry), Strategy, and Visitor use generic types in relation to the core pattern functionality. In most cases, this 

coincides with static usage. Comparing generic usage with C++ template usage in the canonical examples, 

Command, Factory Method, Iterator, and Visitor declare (and use) template types, while Facade, Mediator, and 

Observer use templates (corresponding to a D legend). This illustrates a clear bias towards Behavioural patterns, 

primarily corresponding to dynamic usage in Java. 

 

The evaluation revealed that static usage works fine in simple cases, but quickly makes things tricky. Consider a 

scenario where a specific type must be passed as an argument to a method, like the Observer or Memento 

pattern. Assume such an element is a meta.model.Sequence<E> type. An initial attempt could be to supply 

the specific type as a type parameter, say memento.MemorizableSequence<S>, which could then be used 

directly by the memento.SequenceMemento<S> class. But as Sequence<E> is generic, there has to be a 

relationship between E and S, like MemorizableSequence<E,S extends MemorizableSequence<E>> and  

SequenceMemento<E,S extends MemorizableSequence<E>>. Each memorizable sequence type must 

then implement the MemorizableSequence<E,S extends MemorizableSequence<E>> interface 

supplying its own class as the type parameter S. This yields verbose class definitions, especially if even more 

type parameters are at play. Worse, it makes it hard to use sequence mementos anonymously or via reflection 

because the explicit sequence types must be known. Using SequenceMemento<E,?> will not work because 

wild—card capture cannot be guaranteed. The Memento implementation, therefore, does not use generics in this 

fashion, but has to resolve to casting to get the actual sequence types. Its implementation is illustrated in listing 

7.26 on page 120. In general, the static usage of generics is therefore kept rather simple in the implementations 

compared to dynamic usage.  

 

                                                      

 
8
  The implementation consistently tries to name type parameters E if they are related to the model classes, while names like 

T or P are used for (typically static) type parameters unrelated to (dynamic) model classes.  
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The evaluation shows that dynamic usage is well suited for container types, but it is generally not easy to mix 

generics with reflection because of type erasure. Polymorphism can also be tricky. Still, table 7.1 illustrates 

that generics were used in most pattern implementations. Behavioural patterns such as Chain of Responsibility, 

Composite (Command), Interpreter, Iterator, and Observer can all be considered to exhibit container—like 

behaviour, and Visitor operates on container types, so the use of generics is expected. Generics can help 

enforce type safety and help pave the way for possible reusable components that can operate on different 

types. Listing 7.5 illustrates the dynamic usage in Chain of Responsibility. Creational patterns should employ 

dynamic usage if the products they construct are generic; static usage is already discussed above. As the 

meta.model.Sequence<E> type is the core model object used, it is understandable that Abstract Factory, 

Builder, Factory Method, and Prototype are generic as they use this or a derived type, such as the 

command.Command<E> type. Listing 7.1 in the previous section illustrates how the 

factorymethod.CommandCreator<E,T> class creates generic Command<E> types. Singleton is also 

creational, but much more static and class—centric than the other Creational patterns. In our experience, 

generics are rarely used in singleton classes; this is also true in this evaluation. The only use of generics in the 

Singleton implementation is the Singleton Registry. Structural patterns such as Adapter, Decorator, Facade, and 

Proxy should employ dynamic usage if the original types are generic, which – again – is the case here. Template 

Method is Behavioural, but not a container type unless specifically designed to be so, as for example an internal 

Iterator. The implementation here uses Template Method to construct Sequence<E> types delivering complex 

value types and is reminiscent of Structural patterns such as Decorator.  

 
 

Listing 7.5 — Dynamic usage of generics in Chain of Responsibility 
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public interface Handler<R> { // R = runtime type of request 

  public Handler<R> handle(R request, HandlerLink<R> link); 

} 

 

public interface HandlerLink<R> { 

  public Handler<R> forward(R request, Handler<R> current); 

}  

 

public interface HandlerChain<R> extends Handler<R>, HandlerLink<R> { 

  public void register(Handler<R> handler); 

  public Handler<R> handle(R request); 

  .. 

}  

 

public abstract class AbstractHandlerChain<R> implements HandlerChain<R> { // container-like functionality 

  .. 

  public Handler<R> handle(R request) { 

    return this.forward(request, (Handler<R>)null); // from the start... 

  } 

 

  public Handler<R> forward(R request, Handler<R> current) { 

    Log out = LogFactory.getLog(this); 

    for (Handler<R> handler : this.getHandlers(current)) { // fetch handlers after "current" 

      Handler<R> h = handler.handle(request, null); // null link = no recurse into this chain 

      if (h != null) { 

        out.println("Handled request ", ObjectPolicy.ID.toString(this), ": ", request, " -> ", handler); 

        return h; 

      } 

    } 

    out.println("Could not handle request ", ObjectPolicy.ID.toString(this), ": ", request); 

    return null; 

  } 

 

  public Handler<R> handle(R request, HandlerLink<R> link) { 

    Handler<R> handler = this.handle(request); 

    if (handler != null) { 

      return handler; 

    }  

    return link == null ? null : link.forward(request, this); 

  } 

  .. 

} 
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Generic usage, especially combined with bounds on the type parameters, can also cause problems. Class literals 

cannot describe a generic type, only raw types. Erasure may also cause problems with unchecked casts. 

Standard use of polymorphism for raw types do not apply to generics [Sierra06, p.582-597]: while it is true that 

java.lang.Integer is a sub—class of java.lang.Number and java.util.ArrayList is an 

implementation of java.util.List, for example, ArrayList<Integer> is not a sub—type of 

List<Number>. Bounded wild—cards have to be used for polymorphism of type parameters, as in 

Expression<? extends Number>. This is illustrated in listing 7.4 on page 86, where the ? extends 

Command<E> bound in line 26 ensures that any sub—type of command.Command<E> can be created by the 

factory. As the Interpreter implementation uses generic expression types, this presents certain problems. A 

method to replace a given expression in an expression sub—tree as described by Gamma et al. [Gamma95, 

p.251-255] is not possible in the developed implementation because wild—cards have to be used. Wild—cards 

cannot be used in expression creation because a concrete type must be known, but there is no way to determine 

a common type for all type parameters. The Chain of Responsibility implementation originally used a ? super 

R bound instead of just R on the set of contained handlers in a given handler chain. This proved too cumbersome 

because wild—card capture was not possible on ordinary use. On the other hand, generic bounds are vital for 

correct pattern functionality in several implementations, such as Abstract Factory, Prototype, and Interpreter.  

 

Implementations can use generic types without using generic methods, which is illustrated by the Chain of 

Responsibility implementation. On the other hand, it is possible that generic types augment the use of generic 

methods. Generic methods can still be used unrelated to specific generic types. The Flyweight implementation 

is an example where generic methods are used to look up non—generic flyweight types based on class literals, 

while the Abstract Factory as illustrated in listing 7.17 on page 108 uses bounded generic methods to enforce 

type safety for contained prototypes (line 32 + 39). The Builder implementation is an example of a close 

relationship between generic types and generic methods. The Singleton and Visitor implementations define 

interfaces declaring generic methods that are clearly related to static usage of generic types. This is illustrated 

by the generic visitor.SequenceValueVisitor<P> type, where P identifies the type of argument to supply 

to the visitors. The visitor.ValueVisitableSequence.accept(SequenceValueVisitor<P>, P) 

method must be generic in order to handle any type of P. This is illustrated in listing 7.20 on page 110. 

 

Conclusion –– Static usage of generics ensures compile—time type safety useful for especially Creational 

patterns because the creation process can utilise the knowledge as illustrated by Factory Method. Structural 

patterns rely heavily on object composition and can use generics to ensure proper cooperating types, including 

usage of generic bounds for greater flexibility as illustrated by Bridge. This is also true for Behavioural patterns, 

especially container—like patterns like Observer and Chain of Responsibility. Both static and dynamic usage is 

useful. The choice to use which, or both, is a design choice that depends on the type of objects manipulated by 

the patterns, which is also illustrated in the ―Gang of Four‖ template usage. Generics pave the way for possible 

pattern componentizations because the same components can operate on different types in a type safe manner, 

especially if aided by generic methods and bounds.  
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7.1.1.3. Nested and Anonymous Classes 

There are four kinds of nested classes in Java: static member classes, non—static member classes, local classes, 

and anonymous classes [Bloch01, p.91]. Nested classes in table 7.1 refer to any nested class that is named. This 

corresponds to one of the first three types. An anonymous class is a class without a name. They are by design 

nested classes as they are always defined within the scope of another class, but they are not registered as such 

in table 7.1. The distinction is made because named classes are reusable, while anonymous classes act as unique 

closures. They are declared and instantiated at the same time [Bloch01, p.93]. Non—static, local, and 

anonymous classes are also called inner classes as they share state with the enclosing class. In C++ terminology, 

they can be considered a (localised) friend class [Stroustrup91, p.566-568], but in C++ nested and local classes 

follow the standard C++ access rules and have no special access to state of the enclosing class or function, 

respectively [Stroustrup91, p.551-553]. Inner classes are in Java often used to apply the Adapter pattern 

[Bloch01, p.92]. Java does not have function pointers, or callbacks, like C++ because the functionality can be 

achieved using object references: a function object in Java is a stateless instance of a class that export a single 

method performing operations on other objects [Bloch01, p.115]. Nested classes are often used to create 

function objects and Java has in this sense direct support for the Strategy pattern. Anonymous classes acting as 

closures are sometimes referred to as process objects [Bloch01, p.93]. The canonical C++ implementations do 

not utilise nested or local classes.  

 

Adapter, Decorator, Observer, and Template Method use non—static member classes. Adaptation using non—

static member classes is used in the meta.reflect.proxy.ProxyFactory class that will adapt any proxy to 

conform to the private ProxyFactory.Proxy interface, which will allow retrieval of the proxy factory 

instance that created the proxy. The ProxyFactory class uses the ProxyFactory.Handler class to decorate 

all invocation handlers used by dynamic proxies to achieve a form of method combination (see listing 7.10 on 

page 96). Observer uses non—static member classes for adaptation of the observer.BirthdayRegistry class 

to the observer.SequenceObserver<A> interface without exposing this information externally for misuse. 

As noted by Bloch, this is common use in Java [Bloch01, p.92]. This is illustrated in listing 7.6 below. Template 

Method use non—static member classes as protection proxies to guard access to delivered sequence values (see 

also section 7.1.2.4).  

 
 

Listing 7.6 — Inner classes used for adaptation in Observer  
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public class BirthdayRegistry { // does not implement SequenceObserver 

 

  private final class RegistryObserver<A> implements SequenceObserver<A> { // inner class acts as reusable adapter class 

     

    public void sequenceEvent(Sequence<?> sequence, A aspect) { 

      Object current = sequence.current(); 

      if (current instanceof Date) { 

        if (BirthdayRegistry.this.size() > 0) { 

          BirthdayRegistry.this.checkDate(getFullBirthday((Date)current));  

        } 

      } 

    } 

    .. 

  } 

  .. 

 

  // registration method 

  public <A> boolean register(AspectObservableSequence<SequenceObserver<A>,A,Date> sequence, A... aspects) { 

    RegistryObserver<A> ro = new RegistryObserver<A>(); // implicit reference to enclosing BirthdayRegistry instance 

    .. 

    boolean added = false; 

    for (A aspect : aspects) { 

      added = sequence.addObserver(ro, aspect) || added; // may contain null as well = all 
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Listing 7.6 — Inner classes used for adaptation in Observer  
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    } 

    return added; 

  } 

 

  private void checkDate(Date date) {..} // actual notification method 

  .. 

} 

 

The Adapter implementation in the adapter package uses the Strategy pattern to choose an adaptation 

strategy in form of the adapter.AdapterDelegate<S,T> type. A set of reusable adapter strategies is 

defined in the adapter.AdapterStrategy class, but others can naturally be defined as needed. As illustrated 

in listing 7.7 below, each concrete strategy is an instance of a stateless anonymous inner class with a distinct 

type, thus acting as a function object. If all concrete strategy types are identical, enumeration constants may be 

an alternative to using anonymous inner classes. The actual Strategy implementation in the strategy package 

uses enumerations for concrete strategies in form of the strategy.SequencePolicy and 

strategy.ObjectPolicy enumerations (Policy is a synonym for Strategy [Gamma95, p.315]). Listing 7.21 on 

page 112 illustrates the use of anonymous local classes in the Prototype implementation (line 17-25). 

 
 

Listing 7.7 — Anonymous classes used as concrete strategies in Adapter 
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public class AdapterStrategy { 

 

  public final static AdapterDelegate<Number,String> NUMBER_TO_STRING = // concrete strategy 

    new AdapterDelegate<Number,String>() { // function object (+ toString) 

      public String adapt(Number value) { 

        return value == null ? null : value.toString(); 

      } 

      public String toString() { 

        return "Number->String"; 

      } 

    }; 

         

  public final static AdapterDelegate<CharSequence,Long> CHAR_TO_LONG = // concrete strategy 

    new AdapterDelegate<CharSequence,Long>() { // function object (+ toString) 

      public Long adapt(CharSequence value) { 

        return value == null ? null : Long.valueOf(value.toString()); 

      } 

      public String toString() { 

        return "CharSequence->Long"; 

      } 

    }; 

 

  .. 

} 

 

The evaluation shows that nested classes can promote advanced functionality not directly related to the ―Gang 

of Four‖ patterns, but which can make several patterns more flexible and robust. The State implementation uses 

a public static nested class as factory to create state.StepSequence instances, which are actually dynamic 

proxies. The Singleton implementation uses private static member classes to allow for thread—safe lazy 

initialisation of the Singleton instances without enforcing explicit synchronisation and resulting overhead. The 

technique is well—known and called the Initialise—on—demand holder class idiom [Bloch01, p.194]. It is 

illustrated in listing 7.15 in section 7.1.1.5. A nested static class must be used because inner classes cannot 

declare static attributes. Nested static classes in Java make lazy initialisation of singletons easy and is in fact 

the best way to do so without requiring synchronisation on each call to the static singleton method, as the 

Double—Checked Locking Optimisation [Schmidt00, p.353] pattern for lazy initialisation is broken in Java prior to 

version 5 [Bacon; Bloch01, p.193]. The pattern can be applied in Java 5 and 6, though [Bacon; Bloch08, p.283]. 
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The Prototype and Proxy implementations use anonymous (method—) local classes to construct on—the—fly 

adaptation of invocation handlers to use for dynamic proxies. Like normal inner classes, local classes have access 

to private members of the enclosing class object, but they also act as closures, keeping references to required 

variables supplied as final arguments to the enclosing method. Even more so, because private state is required 

for proxy functionality, the proxy.SequenceProxyFactory class declares a named method—local class.  

 

Anonymous classes also form the base of type literals as described in section 7.1.2.2 on page 107. They allow 

dynamic usage of generics to become static via inheritance. An anonymous class will inherit an abstract generic 

super—class (e.g. type literal) and instantiation requires an actual type, which will be expressed through 

inheritance. The type information can therefore be used reflectively as it is not erased. 

 

Conclusion –– Much of the Prototype and Proxy functionality implemented would practically have been less 

feasible without inner classes acting as closures. Patterns, e.g. Observer and Template Method, can be 

implemented without the use of inner classes, but yielding a less elegant and more verbose design. Nested, 

including anonymous, classes possess several qualities that mix well with the ―Gang of Four‖ patterns and can 

aid in at least encapsulation, information hiding, adaptation, decoration, and delegation. 

7.1.1.4. Enumerations 

Enumerations were added to Java as of version 5. Each enumeration is a class, but each constant in the 

enumeration is also a class and can implement or override functionality required by that constant alone 

[Gosling05, p.256]. This is used to implement and name different traversal strategies for the Composite 

implementation, for example composite.CompositeStrategy.DEPTH_FIRST. Enumerations are also used 

to implement compile—time known strategies in the Strategy and Observer implementations.  

 

However, enumerations have several semantic rules that set them apart from normal classes [Gosling05, p.249], 

the most obvious being that it is a compile—time error to explicitly instantiate an enumeration type. Each 

instance, e.g. constant, is known and fixed at compile—time, but it also means that comparison of for example 

traversal strategies is easy as it can be done on identity. Enumerations inherit the java.lang.Enum<E> class, 

and cannot inherit other classes (single inheritance). They are furthermore guaranteed final; not cloneable; 

serializable; and reflective instantiation of enumeration types is disallowed. The static nature of enumerations is 

applied to ensure that all internal states are non—instantiable in the State pattern implementation; they are 

stateless and all operate on a given delegate sequence instance supplied as an argument. This is illustrated in 

listing 7.8 below. Since defined as an inner enumeration, the states have access to all sequence attributes as in 

line 36-38. As each constant is named, calling other states is easy as in line 15. Usage of enumerations also 

allows switch statements, which is very useful when modelling states (line 10-11, for example). Each unique 

state also defines its own functionality similar to traversal strategies described above. Private nested classes 

cannot offer the same guarantee as enumerations as even private classes with private constructors can be 

instantiated from the enclosing class, or externally via reflection if the security manager allows it. On the other 

hand, states defined as enumerations cannot be sub—classed, but that is no different from private inner classes.  
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Listing 7.8 — Enumeration constants as states in State 
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public interface FunctionalState<E> { 

  public E action(State internalState, StateableSequence<E> sequence); 

} 

 

public class ReversiblePrimeSequence extends AbstractStateableSequence<Integer> implements ReversibleSequence<Integer> { 

 

  private static enum PrimeState implements FunctionalState<Integer> {  

    Start { // concrete state 

      protected void action(State state, ReversiblePrimeSequence sequence) { // State class = enum 

        switch (state) { 

          case START: { 

            if (sequence.maximum < 2) throw new IllegalStateException("Maximum number must be > 2"); 

            sequence.calculate = (sequence.maximum > 3); 

            .. 

            ResetLow.action(state, sequence); break; // initialize, but keep state 

          } 

          case NORMAL: { 

            sequence.setFunctionalState(sequence.calculate ? Calculate : Next, state); break; 

          } 

          .. 

          default: throw new IllegalStateException(state.name()); // should never happen 
        }   

      } 

    }, 

    ResetLow { // concrete state 

      protected void action(State state, ReversiblePrimeSequence sequence) { 

        switch (state) { 

          case NORMAL: { 

            sequence.setFunctionalState(sequence.calculate ? Calculate : Next, state); break; 

          } 

          case START: {..} 

          case RESTART: { 

            .. // fall-through! 

          } 

          case RESET: {  

            sequence.state = state; 

            sequence.index = 3; 

            sequence.prime = 2; 

          } 

        } 

      } 

    }, 

    ResetHigh {..}, // concrete state 

    Calculate {..}, // concrete state 

    Next      {..}, // concrete state 

    Previous  {..}; // concrete state 

 

    public final Integer action(State internalState, StateableSequence<Integer> sequence) { // delegation 

      ReversiblePrimeSequence rps = (ReversiblePrimeSequence)sequence; 

      if (internalState != null) this.action(internalState, rps); 

      return rps.prime; 

    } 

    protected abstract void action(State internalState, ReversiblePrimeSequence sequence); 

  } 

 

  public ReversiblePrimeSequence(int maximum) {..} 

 

  public Integer reverse() { 

    FunctionalState<Integer> fs = this.getFunctionalState(); 

    if (fs == PrimeState.Next) // identity  

      this.setFunctionalState(PrimeState.Previous, State.NORMAL); 

    } else if (fs == PrimeState.Previous) { 

      this.setFunctionalState(PrimeState.Next, State.NORMAL); 

    } else if (..) { 

      .. 

    } 

    .. 

  } 

  .. 

} 

 

The State implementation led us to the novel, or at least one we have not seen before, and yet so simple 

approach of creating a singleton type as an enumeration with only a single constant; the singleton instance. We 

call this the Singleton—as—Single—Constant idiom. However, as enumerations cannot extend other classes, more 

work on part of the developer may have to be required. This means that such singleton types cannot be sub—

classed. Functionality from abstract classes that would otherwise have been inherited must be used via 

composition. It is not possible to supply arguments to the singleton constructor, unless dubious design decisions 

allow usage of system properties, JNDI, and the likes, to determine the singleton behaviour. On the other hand, 

much Singleton behaviour is enforced by Java directly, for example non—instantiable, global point of access, 
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object identity, etc. The singleton.DanishAlphabetSequence is a Singleton implementation using 

enumerations as illustrated in listing 7.9 below. The singleton instance is created and/or acquired using the 

single enumeration constant DanishAlphabetSequence.Instance. The instance is not loaded until the 

constant is first referenced. The actual sequence functionality is represented by a final private 

meta.model.Sequence<java.lang.String> aggregate member that stores the letters in the Danish 

alphabet. However, Singleton implementations using enumerations cannot be sub—classed, nor be generic. 

 
 

Listing 7.9 — Singleton—as—Single—Constant idiom used to implement Singleton 
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public enum DanishAlphabetSequence implements Sequence<String> { // extends java.lang.Enum<DanishAlphabetSequence> 

 

  Instance; // single constant 

 

  private final Sequence<String> sequence = new ArraySequence<String>( // aggregatee (adapter) 

    "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m",  

    "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", 

    "æ", "ø", "å") { 

         

      public Sequence<String> copy() {..} 

  }; 

 

  private DanishAlphabetSequence() {..} // private enumeration constructor required by Java 

 

  public String next() { 

    return this.sequence.next(); // forward call to aggregatee 

  } 

  .. 

} 

 

The use of enumerations in the evaluation is for all pattern implementations associated with interface 

implementation except for the Interpreter pattern as well as usage in Meta classes. The enumeration constants 

are mainly used for implementation expediency, not to define a separate type, save the Singleton and State 

patterns. Their usage is not paramount for any pattern implementation. This indicates that normal classes could 

have been used instead, but perhaps requiring more work. The reverse is not true: enumerations cannot be used 

if inheritance must be used, and each constant has to have the same type. The Adapter implementation 

therefore has to use anonymous inner classes in the adapter.AdapterStrategy class, because each strategy 

has a different (generic) type. Examples of regular usage of enumerations are the meta.util.Primitive Meta 

enumeration and the annotations used to describe the ―Gang of Four‖ participants, for example the 

meta.Scope enumeration. These enumerations are used to define both a type and a fixed set of constants.  

 

Conclusion –– Enumerations proved surprisingly useful in the specialised cases where a few instances of a given 

type are required because of their unique behaviour guaranteed by the compiler. Patterns having a static 

structure will benefit most from their usage. They were used continually to represent Strategy implementations, 

but are also limited in conjunction with generic types. Most significantly, enumerations illustrated that Java has 

built—in support for Singleton pattern.  

7.1.1.5. Exception Handling 

The evaluation shows that exceptions and try—catch—finally blocks in Java can be used in the ―Gang of Four‖ 

implementations in a number of ways. The features have a very versatile use and are embedded in several 

different pattern implementations for different purposes as summarised below.  

 

C++ supports the try—catch idiom, while Java supports try—catch, try—finally, and try—catch—finally 
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[Gosling05, p.396-401]. Unlike C++, Java supports checked as well as unchecked exceptions [Gosling05, p.299]. 

The ―Gang of Four‖ canonical implementations do not use error or exception handling in any way, but that is a 

deliberate choice to simplify the examples. The use of checked exceptions augments the intent of the declaring 

method. From a design point of view, they signal intent, much like annotations. Checked exceptions are used in 

the evaluation when the caller can reasonably be expected to recover [Bloch01, p.172]. Gamma et al. do not 

use exceptions, nor address error handling in general, except certain more or less obscure scenarios using 

Smalltalk‘s doesNotUnderstand mechanism, for example in the Chain of Responsibility pattern [Gamma95, 

p.229]. The lack of error handling in the ―Gang of Four‖ patterns is – of course – a deliberate omission because 

of clarity, space, time, money, etc.  

 

Though exception handling is frequent in most Java programs, including the pattern implementations in this 

evaluation, few specific exception types have been declared. Command, Interpreter, Memento, Singleton, and 

Template Method declare specific exception types. All except the singleton.SingletonException type are 

used to signal a type of execution error, for example a command.CommandException to signal command 

execution failure, and memento.MemorizableException to signal an inapplicable memento state, or an 

interpreter.ExpressionException to signal the evaluation failure. Such errors are all data centric and 

the context must be prepared for errors caused by invalid data. The use of the ExpressionException type is 

illustrated in listing 7.14 on page 103; some errors are recoverable (even intentional), while others are not. 

However, the pattern implementations must ensure failure atomicity to prevent illegal internal states of 

pattern participants in case of errors [Bloch01, p.185]. This is especially true for Memento as it goes to core 

functionality of it: updating only part of the internal state of Originator participant can have potentially 

disastrous effects. Enforcing failure atomicity is illustrated in listing 7.26 on page 120. 

 

The SingletonException is runtime because ordinary use of singleton registries is assumed correct by the 

context using them. The context, for example, should never test for a null return value from a registry, because 

either the singleton instance exist or it does not; a null value does not make any sense, and would constitute a 

poor design decision. Hence, in the general case, the context should not have to worry about checked 

exceptions, as they would never be thrown. In Template Method, a SequenceValueException represents a 

sequence value that is null or cannot be delivered by a primitive operation; again, something that should never 

occur and therefore declared as runtime. That said, the evaluation shows that the pattern implementations 

frequently employ exception chaining by transforming a checked exception to a runtime exception to comply 

with Java‘s handle or declare mantra [Bloch01, p.178-180]. This is trivial and easily done with a try—catch (and 

re—throw) block. 

 

The Interpreter implementation can use a specific type of exception to transfer control to a new expression to 

be evaluated, thereby discarding the current evaluation stack while reusing existing variables and constants. 

This is indeed a crude way to transfer control, but quite effective for small languages. Java‘s built—in try—

catch—finally idiom is in general very useful for manipulating exceptions, but especially so in a case like this. As 

the generic expressions are manipulated, class literals have to be used to supply the expression type at runtime.  

The try—finally or try—catch—finally idioms are very useful for method combination and sub—class hooks. The 
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meta.reflect.proxy.ProxyFactory.Handler class, which is a Decorator, uses a finally block to perform 

method combination: it times (and logs) each invocation of the inner method, even if the inner method fails; 

this is illustrated in listing 7.10 below. The Template Method use finally blocks to ensure a proper state after 

primitive operations and hooks have been executed in the sub—class. In the Command implementation, the 

command.CommandProcessor class uses finally blocks to ensure logging of spawned commands is always 

performed. In Factory Method, the factorymethod.CommandCreator<E,T> class uses a try—catch block to 

ensure a default command.Command<E> is created in case the sub—class creation fails; this is illustrated in 

listing 7.1 on page 84. The Observer implementation uses an error handler strategy in a catch block to delegate 

the error handling elsewhere.  

 
 

Listing 7.10 — try—catch—finally idiom used for method combination in Proxy 
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public class ProxyFactory { 

   

  private class Handler implements InvocationHandler { // decorator 

    .. 

    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { 

      .. 

      Log out = LogFactory.getLog(InvocationHandler.class).println(id, " -> execute start: ", method); 

      long start = System.nanoTime(); 

      try { 

        return this.handler.invoke(proxy, method, args); // call method in decorated handler 

                 

      } catch (Throwable t) { 

        out.warn(id, " -> execute exception: ").warn(t); 

        throw t; // will also trigger finally block 

                 

      } finally { // always executed, even in case of errors 

        long time = System.nanoTime() - start; 

        out.println(id, " -> execute end: ", method, ": ", time, " ns"); 

      } 

    } 

    .. 

  } 

  .. 

} 

 

Exceptions are objects and can be manipulated (almost) like any other object. Exception types cannot be 

generic, and cannot inherit any other class than a sub—class of java.lang.Throwable. By creating exceptions 

without throwing them a stack trace representing the current execution context can be acquired. Combining 

this with class literals and reflection, the java.lang.Class<T> instance representing the caller can be 

acquired. This is exploited by the logger, which uses the information to log the member name and line number 

from the source code file. More importantly, the Memento and Singleton implementations rely on exception 

stack traces to protect access to methods that are only allowed to be invoked by ―friends‖, such as a sub—class 

constructor in Singleton. We refer to the Singleton and Memento types as guarded types. Unlike C++, the access 

check has to be made at runtime. The usage is closely related to class literals and thus explained in section 

7.1.2.1 on page 102. 

 

Conclusion –– Java‘s support for exceptions and exception handling is used extensively throughout the pattern 

implementations to support pattern invariants in one way or another. Instantiation protocols and method 

combination are implemented using these features. Exception stack traces are also useful for applying additional 

simple access checks to the pattern implementations, such as identifying the caller, but the problem is that the 

security it provides is runtime, not compile—time. If it fails at runtime, the solution may be compromised. 
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7.1.1.6. Covariant Return Types 

While it has always been possible to return a polymorphic type prior to Java 5, covariant return types now allow 

an overriding method to formally narrow the return type at compile—time by changing the method signature 

[Gosling05, p.220-221]. Abstract Factory, Builder, Command, Factory Method, Interpreter, Prototype, Singleton, 

and Template Method use covariant return types. The evaluation shows that factory—like methods can benefit 

from covariant return types, for example Prototype as the client statically has access to the precise type, but 

also that careful considerations must be made before changing the participant types. Several implementations 

narrow the return type to a specific class in favour of an abstract type (interface), for example Abstract Factory. 

In some cases, it is not possible to return an interface because no interface is available. However, care must be 

taken to ensure that the themes described by Gamma et al. are adhered to, here especially programming to an 

interface as opposed to the implementation (section 2.1.2). If covariant return types are used internally in a 

participant, as for example in the Template Method implementation, using actual classes is not a problem. It is 

when the public signature is changed problems may arise. Finally, covariant return types may augment 

overloading as the compile—time type is known. In theory, for example, this could aid Visitor to allow all 

visitation methods to be named visit(..) if the exact type of visited objects are known at compile—time. 

Note, however, that while C++ supports covariant return types for virtual functions [Stroustrup91, p.647], this is 

not utilised in a single canonical pattern implementation by Gamma et al. as far as we can tell. 

 

The Abstract Factory implementation use covariant return types to specify the precise type of created objects 

where meaningful and if possible. This is external use, but important because knowing that a factory creates 

bridge.MemorizableSequenceAbstraction<E> objects, for example, ensures that the Memento 

functionality is visible. In Factory Method, the factorymethod.CommandCreator<E,T> abstract class allows 

default creation of commands in case regular creation fails. Sub—classes can override the default creation hook, 

or the creation method itself for that matter, to specify the exact created type. This is internal usage. The 

meta.reflect.CallerClass and its sub—class meta.reflect.Caller utilise covariant return types when 

returning the caller of a given execution context: CallerClass.getCaller() returns a CallerClass type, 

while Caller.getCaller() returns a Caller type. The getCaller() method can be seen as a Factory 

Method for public usage, but there is no proper interface to return, so a class is returned. Template Methods 

often utilise several primitive and/or hook operations that it may be possible to specialise, as is the case in the 

templatemethod.ZipSequence class. This allows both template, primitive, and hook operations to internally 

use the precise types without casting, which allows for compile—time safety in the implementation. 

 

Strict prototypical types will in their copy() declaration or implementation specify the actual implementing 

type as the return type, and sub—classes of the given type will refine the type even further to a specific class. 

The prototype.Copyable<T> interface offers a more lenient contract compared to returning the precise type 

as required by the prototype.StrictCopyable<T> interface. For example, command.Command<E> 

implements StrictCopyable<Command<E>> and the method signature becomes Command<E> copy(). The 

command.CompositeCommand<E> class implements Command<E>, but declares that it returns a 

CompositeCommand<E> from its copy() method, not just any Command<E> type. After copy, for example, 

the client can access the getCommands() method without having to cast, but CompositeCommand<E> is a 
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concrete class. This is similar to Abstract Factory, and is illustrated in listing 7.11 below. The 

meta.model.ReversibleSequence<E> interface extends meta.model.Sequence<E> and refines its 

copy() method to return a ReversibleSequence<E> type, but actual reversible sequences will narrow it 

even further to the concrete class. 

 
 

Listing 7.11 — Covariant return types for prototypical and composite behaviour in Command 
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public interface Command<E> extends StrictCopyable<Command<E>> { // prototype 

 

  public Command<E> copy(); 

  .. 

} 

 

public class CompositeCommand<E> implements Command<E>, Iterable<Command<E>> { // composite 

  .. 

 

  public CompositeCommand(CompositeCommand<E> command) { // copy constructor 

    this(); 

    for (Command<E> c : command) { // language support for iteration 

      this.addCommand(c.copy());   // copy contained command   

    } 

  } 

   

  public CompositeCommand<E> copy() { // covariant return type 

    return new CompositeCommand<E>(this); 

  } 

 

  public Iterator<Command<E>> iterator() {..} 

 

  public List<Command<E>> getCommands() {..} // this.copy().getCommands() compiles 

   

  public boolean addCommand(Command<E> command) {..} 

  .. 

} 

 

The Singleton implementation is interesting because it utilises a covariant return type on a redefined static 

method. Static methods cannot be overridden in Java, but they can be redefined, or hidden, unless declared 

final [Sierra06, p.147]. The singleton.SimpsonsFamilySequence class is a singleton type that allow sub—

classing. The singleton SimpsonsFamilySequence instance is acquired using the static getFamily() 

method. The singleton.SimpsonsAndBouvierFamilySequence class is a sub—class of 

SimpsonsFamilySequence and defines a static getFamily() method as well, but it returns the 

SimpsonsAndBouvierFamilySequence type, e.g. instance. This is more flexible that what the canonical 

―Gang of Four‖ implementations can offer in C++. 

 

The Builder implementation is an example of some of the problems that may be involved when using covariant 

return types in the design. The builder.ExpressionBuilder<E> builds interpreter.Expression<E> 

types, while the builder.TypedExpressionBuilder<E> builds interpreter.TypedExpression<E> 

types, a sub—type of Expression<E>. TypedExpressionBuilder<E> uses an aggregate builder to perform 

the actual construction, where after the constructed expressions are enriched (decorated) with the required 

type information. ExpressionBuilder<E> returns the Expression<E> interface from most build methods, 

which shields the client from knowing the precise expression types. However, certain expression types must be 

known to utilise their functionality, such as the interpreter.FlowExpression<E> used to build composite 

expressions. To treat composites and non—composites alike, Gamma et al. suggest definining a method in the 

Component participant to return the composite (this or null) [Gamma95, p.168]. Here, Expression<E> is the 

component and FlowExpression<E> the composite. However, this is not a viable solution, as other specific 

types of expressions must sometimes be known; defining specific methods to acquire each type is not an option. 
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So, how can TypedExpressionBuilder<E> narrow the return type for FlowExpression<E> without loosing 

any type information? Inheritance, dynamic proxies, and/or decoration/adaptation must be used. Dynamic 

proxies can only be used if an interface is used. Decoration and adaptation can only be used if a non—final type 

is known. Inheritance only if a concrete class is known, regardless if an interface is known. As 

FlowExpression<E> is concrete, but not final, we have to make a decorator wrapping the created 

FlowExpression<E>, overriding all methods, and adapting it to the TypedExpression<E> interface. This is 

tedious at best, but cannot be avoided. This type of solution is illustrated in listing 7.12 below. In the general 

case, it cannot be guaranteed to work because the type to be narrowed can be either an interface with no 

accessible implementation or a (final) class with no interface. On the plus side, examples such as this illustrate 

how other patterns can aid in a possible solution, particularly Decorator and Adapter, but also Composite. 

 
 

Listing 7.12 — Decoration and adaptation required for covariant return types in Builder 
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public interface Expression<E> extends StrictCopyable<Expression<E>> {..} 

 

public class FlowExpression<E> extends AbstractExpression<E> // concrete composite type 

  implements NonTerminalExpression<E>, InitialisableExpression<E> {  

  public FlowExpression<E> add(Expression<? extends E> expression) throws ExpressionException {..} 

  .. 

} 

 

public interface TypedExpression<E> extends Expression<E> {..} 

 

public class TypedFlowExpression<E> extends FlowExpression<E> implements TypedExpression<E> {..} // decorator/adapter 

 

public interface ExpressionBuilder<E> extends StrictCopyable<ExpressionBuilder<E>> { 

  public FlowExpression<E> buildFlowExpression(); // concrete return type required 

  public Expression<Boolean> buildEqualExpression(Expression<?> first, Expression<?> second); 

  .. 

} 

 

public class TypedExpressionBuilder<E> extends AbstractExpressionBuilder<E> implements ExpressionBuilder<E> { 

  protected final Class<E> type; 

  protected final ExpressionBuilder<E> builder; // aggregate builder 

  .. 

 

  protected final static <T> TypedExpression<T> getTypedExpression(Expression<T> expression, Class<T> type) {..} 

 

  public TypedFlowExpression<E> buildFlowExpression() { // specific concrete type required as not to loose information 

    FlowExpression<E> fe = this.builder.buildFlowExpression(); 

    if (fe instanceof TypedFlowExpression) { 

      return (TypedFlowExpression<E>)fe; 

    } 

    return new TypedFlowExpression<E>(this.type, fe); 

  } 

 

  public TypedExpression<Boolean> buildEqualExpression(Expression<?> first, Expression<?> second) { // simple covariant 

    return getTypedExpression(this.builder.buildEqualExpression(first, second), Boolean.class); 

  } 

  .. 

}               

 

Conclusion –– Covariant return types can eliminate the need for casts in several pattern implementations, 

which boosts the overall type safety, but also the pattern intent. Publicly, the feature must be used wisely 

because it changes the static structure of the pattern participant(s) and may cause access to implementations 

rather than interfaces. The evaluation shows that covariant return types are especially useful combined with 

static usage of generics (see section 7.1.1.2 on page 85) or with class—based inheritance. Creational patterns 

seem to benefit most from this feature in this evaluation because of their factory—like behaviour.  
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7.1.1.7. Varargs  

Like enumerations, varargs9 were added as of Java 5 [Sierra06, p.46]. C++ supports varargs using the 

functionality in the <cstdarg> (or the C <stdarg.h>) header, but this is not utilised in the canonical 

examples. A reason could be that no header files are used at all in the relatively simple examples. In Java, 

varargs are used for Builder, Command, Composite, Interpreter, Observer, Proxy, and Template Method. The 

usage is for all except the last two related to the container—like behaviour of pivotal pattern participants, such 

as the command.CompositeCommand<E> or observer.ObserverManager classes. By using varargs, the lazy 

developer does not have to construct a temporary array or collection to add to a given container to supply the 

actual elements. This type of usage can always be replaced by use of arrays or collections in local program code. 

The use of varargs may also cause compiler warnings if combined with generics, because it is not possible to 

create a generic array in Java. This is a clear indication of the close connection between varargs and arrays.  

 

Varargs is used extensively in the Java reflection API. Because of this, several Meta classes utilise varargs as 

well, for example meta.reflect.Reflection and meta.reflect.proxy.ProxyFactory. Consequently, 

the Proxy implementation also uses varargs. As illustrated in several program listings in this chapter, the 

meta.log.Log implementation uses varargs to avoid string concatenation. However, the Template Method 

implementation is perhaps the finest example of varargs usage: the 

templatemethod.SequenceTemplate<K,E> abstract class permits sub—classes to supply any number of 

arguments that it will forward to the initialisation hook in the sub—class itself. This is illustrated in listing 7.13. 

C++ does not allow abstract (pure virtual) methods to be invoked from a constructor, so such a scenario is not 

possible in C++ [Stroustrup91, p.582]. However, this feature has to be used with caution because sub—class 

constructors will not have been initialised yet [Bloch01, p.80], but it has nothing to do with varargs in general. 

In a controlled design like the Template Method implementation, it works fine and makes the Template Method 

implementation very flexible.  

 
 

Listing 7.13 — Varargs usage in Template Method 
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public abstract class SequenceTemplate<K,E> extends AbstractSequence<E> implements Closeable { 

  .. 

  protected SequenceTemplate(Object... arguments) throws SequenceValueException { 

    .. 

    this.closed = !this.sequenceOpen(arguments); // perform sub-class specific sequence initialisation  

    .. 

  } 

 

  protected abstract boolean sequenceOpen(Object... arguments) throws Exception; // abstract operation 

 

  protected void sequenceClose() throws Exception {..} // hook operation with default behaviour 

  .. 

} 

 

Conclusion –– Varargs can be useful for patterns that need to forward arguments to sub—classes, delegates, 

and/or aggregates. They can also be useful for container—like patterns when adding elements, but may generate 

compiler warnings in situations involving generics. They do not offer anything new as arrays can achieve the 

same result. 

                                                      

 
9
  Formally, a function that accepts a variable number of arguments, i.e. has variable arity, is a variadic function. Varargs in 

Java is basically syntactic sugar, albeit sweet tasting in our opinion, for arrays.  
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7.1.1.8. Summary 

C++ and Java 6 share many static features, but the canonical pattern examples do not express several of the 

features examined in this evaluation. Still, we have illustrated that features such as exceptions and error 

handling, covariant return types, and varargs may be useful to augment pattern functionality as shown in table 

7.1 on page 82. Narrowing the return type is closely related to inheritance and implementation. It is used in 

around a third of the pattern implementations. Varargs is useful for Creational patterns to support different 

instantiation protocols and convenient for Behavioural container—like patterns to manipulate contained objects. 

Exception handling idioms like try—catch—finally allow for explicit flow control and are useful for method 

combination, while usage of exceptions strengthens the pattern robustness by statically documenting pattern 

intent and enforcing it at runtime.  

 

Use of packages, interfaces, and classes form the foundation for any pattern implementation, regardless of 

purpose and scope. Interfaces are used explicitly in all pattern implementations except Template Method and 

Singleton. This is a clear indication that the pattern implementations express the ―program to an interface, not 

an implementation‖ theme expressed by Gamma et al. as explained in section 2.1.2. Inheritance is exploited in 

seventeen pattern implementations, while abstract classes in around half. Use of abstract classes is always 

associated with interface usage. The evaluation shows that inheritance does not exclude composition and the 

two are often used hand—in—hand, combined with interface usage. Hence, the ―favour object composition over 

class inheritance‖ theme by Gamma et al. is also expressed. Inner classes are very useful because of their 

versatility. They can express adaptation and decoration, thus facilitating object composition; they augment 

static usage of generics; and they can aid in encapsulation and information hiding. Enumerations are useful for 

patterns that require explicit control over compile—time known instances of a given type.  

 

Generics are used in all implementations except Facade, but only half are unrelated to the evaluation context. 

This indicates that the context to which the ―Gang of Four‖ design patterns are applied will influence the 

implementation. Both static and dynamic usage of generics is useful to express pattern functionality. Static 

usage of generics ensures compile—time type safety useful for especially Creational patterns. Structural patterns 

rely heavily on object composition and can use generics to ensure proper cooperating types, including usage of 

generic bounds for greater flexibility. This is also true for Behavioural patterns.  

7.1.2. Reflection 

This section discusses the use of Java‘s reflective capabilities to implement pattern functionality. Gamma et al. 

provide several examples that use or discuss specialised runtime behaviour, albeit in languages like Smalltalk 

and Self as C++ excels in the lack of runtime features. Examples include using classes to create objects in 

Abstract Factory [Gamma95, p.90-91] and Factory Method [Gamma95, p.112]; changing the class of an object 

runtime for State behaviour [Gamma95, p.309]; interception and/or forwarding of messages in Proxy [Gamma95, 

p215-216] and Chain of Responsibility [Gamma95, p.229]; as well as closures (code blocks in Smalltalk) in 

Adapter [Gamma95, p.145]. Java supports all these features: class literals can be used for type safety at 

runtime, and to create new instances of a given class; dynamic proxies can intercept messages and effectively 

change the class of an object at runtime; and inner classes provide direct support for a limited form of closures.  
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Gamma et al. also provide several examples that use C++ templates for static creational and/or behavioural 

purposes in manners not supported directly by Java, but which can be mimicked at runtime. There is no 

requirement for a C++ template parameter to be defined as an abstract type, which is reminiscent of (static) 

duck typing (see also section 7.1.2.4) and used in the Strategy implementation [Gamma95, p.319]. Statically, 

this cannot be enforced in Java without using a common type in form of an upper bound, but can be simulated 

using annotations at runtime to identify the method of interest. This is also true for the Command [Gamma95, 

p.240-241] example, which uses function pointers. Directly using the new operator to create instances of an 

actual C++ template parameter as in Factory Method [Gamma95, p.113] is not possible in Java because of type 

erasure. It can be simulated through class or type literals, the latter even supporting creation of exact generic 

types. A type literal is a Meta class defined in this evaluation that in certain situations allow generic type 

information to be retained at runtime. Furthermore, privileged access (friends) to certain operations as in the 

Memento example [Gamma95, p.287] can be achieved statically through package private access, or using 

reflection at runtime. Overloading of the member access operator can be achieved by dynamic proxies in Java to 

mimic the behaviour described in the Proxy example [Gamma95, p.221]. 

7.1.2.1. Class Literals 

Builder, Command, Composite, Flyweight, Interpreter, Singleton, and Strategy use class literals for runtime type 

safety, in particular inquiries about type information possibly followed by casts. A class literal is a 

java.lang.Class<T> instance representing the type T. For example, java.lang.String.class is 

represented by Class<String>. A class represents structural Meta data and need not be used reflectively. 

Here, we consider reflective usage. Class literals are frequently used to access methods and constructors as 

described separately in section 7.1.2.3, or to load classes dynamically. The latter is only used in the 

meta.reflect.CallerClass type to load classes based on stack trace elements as explained below. 

Otherwise, class loading is handled explicitly by class loaders, the use of which is discussed in section 7.1.3.4. 

Class literals can be directly used to instantiate new instances of the type it describes if the class declares a 

public no—argument constructor. In the evaluation, all reflective creation is handled explicitly by constructors. 

Because of the extensive use of generic types as described in section 7.1.1.2 on page 85, type literals are used 

in favour of class literals for creational purposes regarding generic types as described in the next section.  

 

Type safe casting is closely related to generic types and methods: because of erasure, it is unsafe to cast to a 

type parameter. Instead, the java.lang.Class.cast(java.lang.Object) method has to be used to cast 

to a given type, but it requires a class literal, Class<T>, at runtime to allow type safe casting to T. This is 

important for any pattern implementation that operates on generic types to keep it type—safe, even if it does 

not directly relate to the core pattern functionality. The Abstract Factory implementation illustrates the use of 

class literals for type safe casting in listing 7.17 on page 108 (line 47). Command, Composite, and Flyweight use 

class literals in generic methods to allow a specific type of contained objects to be retrieved, but this is not 

vital for the core pattern functionality. It is a principle, though, that can be applied to most container—like 

Behavioural patterns. Builder only uses class literals because it builds generic interpreter.Expression<E> 

instances from the Interpreter implementation. A cast is required to deliver the correct singleton type because 

the Singleton implementation uses annotations to identify singleton types and methods (see section 7.1.2.5). 
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One of the more direct uses of class literals in this evaluation is the Interpreter implementation. As described, 

generic expression types are used in form of the Expression<E> type. This causes the need for class literals to 

ensure type safety when casting to E. The interpreter.Context class stores variables and constants of any 

type with their assigned values. The only guaranteed super type of the values is java.lang.Object, which is 

how they are stored internally in Context. When a value is requested, it must be cast into the proper type to 

ensure type safety. Simply casting to E will cause an unchecked warning because of type erasure. For this to 

work, the interpreter.VariableExpression<E> and interpreter.ConstantExpression<E> classes 

used to represent variables and constants store their generic type internally as a class literal, i.e. Class<E>. 

The assigned value can then be cast to E using the Class.cast(Object) method from the class literal. Since 

other types of expressions require access to runtime type information as well, a specific interface describes the 

functionality. All such types implement the interpreter.TypedExpression<E> interface.  

 
 

Listing 7.14 — Class literals in Interpreter 
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public interface Expression<E> extends StrictCopyable<Expression<E>> { // expression 

  public E evaluate(Context context) throws ExpressionException; 

  public String asSymbol(Context context) throws ExpressionException; 

  public List<Expression<?>> operands(); 

  .. 

} 

 

public interface TypedExpression<E> extends Expression<E> { // typed expression using class literals 

  public Class<E> type(); 

  .. 

} 

 

public class Interpreter<T> { 

  private final Class<T> type; // class literal  

  .. 

   

  public <E extends T> T interpret(Context context, Expression<E> expression) throws ExpressionException { 

    return this.interpret(context, expression, this.type); 

  } 

 

  @SuppressWarnings("unchecked") 

  public <E extends T> E interpret(Context context, Expression<E> expression, Class<? super E> type)  

    throws ExpressionException { 

    .. 

    try { 

      .. 

      out.println("Interpreting: ", expression.name(), " -> ", expression.asSymbol(context.reset())); 

      return expression.evaluate(context); 

          

    } catch (BreakExpression.BreakException be) { 

      if (be.expression != null) { 

        if (type.isAssignableFrom(be.expression.type())) { // check type 

          out.warn("Breaking and transfering control to: ", be.expression.asSymbol(context.reset())); 

          return this.interpret(context, (Expression<E>)be.expression, type); // cast 

        } else { 

          out.warn("Cannot handle expression: ", be.expression.type(), " -> ", be.expression.asSymbol(context.reset())); 

          // fall-through 

        } 

      } 

      out.warn("Interpretation exited"); 

      return null; 

             

    } catch (ExpressionException ee) { 

      out.println().error("Interpretation failed").error(ee); 

      throw ee; 

    } 

  } 

  .. 

} 

 

As illustrated in listing 7.14 above, the Interpreter implementation also allows the interpretation to exit the 

current evaluation and perhaps transfer control to a new expression. This is achieved by using a special 

exception type, interpreter.BreakExpression.BreakException as seen in line 30, which stores the 

expression to transfer control to. A BreakException will effectively discard the current evaluation stack while 

reusing existing variables and constants if a new expression is to be evaluated; crude, but effective for small 
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languages. As exception types cannot be generic, an expression must be stored with a wild—card type 

parameter. To retain the actual type information, a class literal is used to store the type parameter within the 

expression; the exception can therefore only store TypedExpression<?> instances (line 31-32). This 

information is enough to determine if the interpreter can handle the actual expression type, and if so make an 

appropriate cast (line 32-34) before interpreting the expression (line 34). If the type cannot be handled, the 

interpretation must be aborted (line 41). While the cast to Expression<E> is known to succeed because of the 

test in line 32, the actual type of E is unknown, and hence warnings must be suppressed. It is not possible to use 

Class.cast(Object) because Expression<E> is generic, but type literals could have been used to remedy 

this. The interpreter.Main test class provide tests that exemplify expressions transferring control to other 

expressions.  

 

The Bridge, Memento, Observer, and Singleton implementations uses class literals in more advanced ways. The 

observer.ObserverManager class use annotations to identify the notification methods to notify observers 

with, and class literals determine if a given annotation is applicable for the ObserverManager or some other 

context using the general @Executor annotation (section 7.1.2.5 covers annotation usage). For example, the 

@Executor(ObserverManager.class) annotation indicates that only the ObserverManager will use the 

annotated method, regardless of which class declares the annotated method.  

 

Bridge, Memento, and Singleton use class literals to identify the caller of a given context based on exception 

stack traces. The meta.reflect.CallerClass and meta.reflect.Caller Meta classes create exceptions, 

but do not throw them. The stack trace is used to identify the current caller. Combining this with class literals 

and reflection, the java.lang.Class<T> instance representing the caller can be acquired. Even more so, 

Caller can identify a Java member object representing the caller as a static initialisation block, initialisation 

block/constructor, or method, e.g. a java.lang.reflect.Method instance10. This is similar to joint points in 

AspectJ as discussed in section 4.3.3. This is used in the Singleton implementations to allow sub—classing, an 

issue discussed to some extent by Gamma et al. [Gamma95, p.130-133], but also to ensure that the private 

singleton constructor cannot be invoked via reflection. This is a novel approach to allow sub—classing of 

singleton types that we have not seen elsewhere, and is more flexible than using the Singleton—as—Single—

Constant idiom as described in section 7.1.1.4. The Singleton—as—Single—Constant idiom cannot apply this 

technique, because enumerations cannot be sub—classed. The principle is illustrated in listing 7.15 below.  

 
 

Listing 7.15 — Stack trace and identification of class members used for sub—classing in Singleton 
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public class SimpsonsFamilySequence extends ArraySequence<String> { 

  .. 

 

  private final static class Instance { // initialize-on-demand holder class idiom 

    private final static SimpsonsFamilySequence instance = new SimpsonsFamilySequence(); 

  }  

   

  public final static SimpsonsFamilySequence getFamily() {  

    return Instance.instance; 

  }  

 

  private SimpsonsFamilySequence() { // singleton constructor 

                                                      

 
10

  A fitting idiom name to describe the use of callers as exemplified by the meta.reflect.Caller class could be *69.  
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Listing 7.15 — Stack trace and identification of class members used for sub—classing in Singleton 
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    .. 

    Caller caller = new Caller().getNonClassCaller(); // caller created based on exception stack trace 

    if ((caller.callerClass != Instance.class) || (!caller.isStatic())) { 

      LogFactory.getLog(this).error("Illegal access to singleton constructor: ", caller); 

      throw new SingletonError(caller); 

    } 

  } 

 

  protected SimpsonsFamilySequence(String... members) { // singleton sub-class constructor 

    .. 

    Caller caller = new Caller(); // caller created based on exception stack trace 

    Caller subClass = caller.getSubClassCaller(); 

    if ((subClass == null) || (!subClass.isConstructor())) { 

      LogFactory.getLog(this).error("Illegal access to sub-class constructor: ", caller); 

      throw new SingletonError(caller); 

    } 

  } 

  .. 

} 

 

The singleton.SimpsonsFamilySequence allows a sub—class constructor to invoke its protected sub—class 

constructor or its protected sub—class copy constructor. It does so by identifying the first caller that is a 

constructor in a sub—class of SimpsonsFamilySequence, if any. If no such caller is found, a 

singleton.SingletonError is thrown. SingletonError extends java.lang.Error because invoking a 

sub—class constructor from outside a sub—class is most definitely a big ―no—no‖ and programmer error. 

However, any singleton type that allows sub—classing in this manner has to trust the sub—class to some extent, 

because it is not possible to determine if the sub—class constructor invokes the super constructor as it should, 

e.g. super(..), or creates a new instance of the super—class in the sub—class constructor directly using new. 

Making the super—class abstract is not an option, because then not even a single instance of it can be created.  

 

Using caller information in this way is basically an attempt to imitate friends from C++. The canonical Memento 

implementation by Gamma et al. uses friends to ensure the Memento participant has ―two interfaces‖, a narrow 

(public) and a wide (public and private) with respect to the functionality offered. The private parts of the wide 

interface are accessed by friends [Gamma95, p.287] as Gamma et al. stress the importance of implementing 

Memento without violating encapsulation. The same principle is applied in the canonical State implementation 

[Gamma95, p.305]. This is not possible in Java because Java does not support friends and private interface 

signatures and/or private implementation in this manner. If the functionality described by the Memento 

participant, e.g. memento.SequenceMemento<E>, must be used outside the declaring package, it must be 

public unless reflectively accessed. To ensure that only a (memorizable) sequence has access to the state 

methods in the memento, CallerClass is used once again. The memento.GuardedSequenceMemento<E> 

(sub—)class simply checks if the caller class corresponds to the sequence type stored in the memento; internally, 

a snap—shot (copy) of the sequence represents the state to set. We call GuardedSequenceMemento<E> and 

SimpsonsFamilySequence guarded types. Below, listing 7.16 illustrates the GuardedSequenceMemento<E> 

implementation. Its usage is illustrated in listing 7.26 on page 120, where line 19 calls the 

GuardedSequenceMemento.getSequence() state method declared in line 3 below. It will throw an 

exception if it is invoked from a context class different from the one that stored the sequence in the memento 

in the first place. In listing 7.26, any other class than memento.RangeSequence calling the method on the 

memento instance will cause an exception as RangeSequence created the memento (line 14).  
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Listing 7.16 — Stack trace and class literals used to identify caller in Memento 
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public class GuardedSequenceMemento<E> extends SequenceMemento<E> { 

  .. 

  public final Sequence<E> getSequence() { // override 

    Sequence<E> sequence = super.getSequence(); 

    CallerClass caller = new CallerClass().getNonClassCaller(); // may be called from this class 

    if (!sequence.getClass().equals(caller.callerClass)) {      // only type of "sequence" is allowed to call 

      LogFactory.getLog(this).error("Caller does not have access: ", caller); 

      throw new UnsupportedOperationException("Method not supported for caller: " + caller); 

    } 

    return sequence; 

  } 

 

  public final void setSequence(Sequence<E> sequence) { // override 

    CallerClass caller = new CallerClass(); 

    if (caller.isSuperClass()) { // may be called from super class constructor 

      caller = caller.getCaller();  

    } 

    caller = caller.getNonAssignableCaller();  

    if (!sequence.getClass().equals(caller.callerClass)) { // caller type must equal type of "sequence" 

      LogFactory.getLog(this).error("Caller does not have access: ", caller); 

      throw new UnsupportedOperationException("Method not supported for caller: " + caller); 

    } 

    super.setSequence(sequence); 

  } 

  .. 

} 

 

This principle could also be used in protection proxies [Gamma95, p.208]. Unfortunately, the friend—check is 

not exactly cheap. It has to be enforced runtime and cannot be employed at compile—time; we get static type 

safety offered by interfaces with runtime protection of critical operations. On the plus side is that 

CallerClass only use reflection to acquire structural information, not to invoke methods or constructors. The 

caller functionality is through the CallerClass and Caller types only, no direct use of reflection. The 

Singleton implementation is more robust in that the constructors in question are already declared protected and 

thus requires inheritance to even being considered invoked. This is not the case for public methods. The State 

implementation does not utilise caller information, but could do so analogous to the Memento implementation. 

 

The Bridge implementation uses caller information to determine if a given method is being invoked as part of 

the super—class initialisation process or because or ordinary usage. The GuardedSequenceMemento<E> class 

also inquires about super—class invocation based on caller information as illustrated in line 15-16 in listing 7.16 

above. The bridge.SequenceAbstraction<E> class allows its implementation in form of a 

bridge.SequenceValueGenerator<? extends E> type to be set after constructor initialisation, but 

before actual use. The internal state of the sequence abstraction is calculated based on the implementation 

used, but if no generator is set, the state cannot be determined. Hence, the SequenceAbstraction.state() 

method must throw an exception if invoked before a state can be calculated because sequences by design 

always have a value and state. However, it is perfectly valid to copy an uninitialised sequence abstraction. The 

state() method should therefore not fail in case a generator has not been set when the state() method is 

used in the super—class copy constructor process. This principle could also be applied in Template Method if it 

delegates control to primitive or hook operations during initialisation.  

 

Conclusion –– Class literals have a number of usages, primarily runtime type safety. All pattern 

implementations in this evaluation that use class literals also use generic types, and all but one use generic 

methods as well. They are very useful for container—like Behavioural patterns operating on numerous types to 

identify a particular type of interest. Class literals form the base for type literals, and are indirectly used to 
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create new instances. Without class literals, it would not be possible to implement reflective Creational 

patterns. Combined with stack trace information, class literals also allow runtime access checks. Using class 

literals for reflective purposes will influence the design of pattern participants.  

7.1.2.2. Type Literals 

Unlike class literals, type literals are capable of describing actual generic type parameters in certain situations, 

making the information available at runtime. While java.lang.Class<T> describes the type T, there is no 

way to acquire an exact class of T if it is a generic type without applying in an unchecked cast. Class literals 

only represent raw types. Type literals are not a built—in mechanism like class literals but reusable components 

based on an idea by Neal Gafter called Gafter’s Gadget [Gafter06]. The implementation here is more advanced, 

though. Type literals are represented by the abstract meta.reflect.TypeLiteral<T> class describing the 

type T in a type safe manner, where T may be generic. Since abstract, only sub—classing allows a type literal to 

be created. Using anonymous sub—classes, dynamic usage of T becomes static through inheritance because an 

explicit type of T is required to create a new instance of the sub—class. T can thus be accessed at runtime via 

reflection because it is not erased. This is actually close to the use of templates in C++ in the sense that a new 

type is created per type literal instance. The abstract meta.reflect.InstantiableTypeLiteral<T> class 

is an example of standard sub—classing of TypeLiteral<T>. It provides functionality to create new instances 

of T in a type safe manner, even if T is generic. Powerful stuff, indeed, but runtime errors may occur in case T 

represents an interface or abstract class, or if the actual sub—class of InstantiableTypeLiteral<T> is 

generic as well (in which case T is still used dynamically). However, that defies the whole purpose of type 

literals and is as such classified as a programmer error. However, unchecked warnings may have to be 

suppressed while working with type literals, even though the logic ensures conforming types.  

 

Type literals are used for two purposes: for creational purposes and acquisition of a precise generic type. 

Abstract Factory and Factory Method use type literals to create products, while Prototype, Proxy, Singleton, and 

Visitor use them to acquire generic type information. While type literals are designed to describe generic types 

class literals cannot, Prototype, Proxy, and Visitor only use them because they operate on generic model 

classes. Advanced type literal usage is illustrated in the Singleton implementation in listing 7.28 on page 124.  

 

Inspired by Gamma et al., the Factory Method implementation in this evaluation illustrates how reflection can 

be used in the creation process. Abstract Factory provides examples of reflective creation as well, but also 

illustrates how the Prototype pattern can be used as an alternative in many situations. Gamma et al. illustrate 

how C++ templates in Factory Method can be used to create new products [Gamma95, p.113]: new is simply 

invoked directly on the actual type of the type parameter within the template. Such a scenario is not possible in 

Java. C++ templates and Java generics are fundamentally different in that a C++ template creates a new type 

for each unique type parameter usage and allow template specialisation [Stroustrup91, p.596-597], while Java 

uses the same raw type regardless of type parameter [Bracha04, p.14]. There are two alternatives in Java: a) 

specify a generic bound that identifies a type acting as a prototype or delivering a factory method, or b) use 

reflection. Regarding a), Gamma et al. provide a similar example in their Command implementation using C++ 

function pointers [Gamma95, p.240-241], but also in the Strategy implementation [Gamma95, p.319]. In this 
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evaluation, the prototype.StrictCopyable<T> interface defines prototypical behaviour and is thus a prime 

candidate as a generic upper bound. Abstract Factory utilises this by implementing a simple stand—alone factory 

that works by copying prototypes. A prototypical registry that can create numerous product types based on class 

literals is also defined. This is illustrated in listing 7.17 below.  

 
 

Listing 7.17 — Reusable prototypical factories in Abstract Factory 
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public class PrototypicalFactory<T extends StrictCopyable<T>> { // generic bound ensures a copy() method is available 

  private final T prototype; 

     

  public PrototypicalFactory(T prototype) { 

    this.prototype = prototype.copy(); // defensive copy 

  } 

     

  public T create() { 

    return this.prototype.copy(); 

  } 

} 

 

public class PrototypicalSequenceFactory<E> extends PrototypicalFactory<Sequence<E>> implements SequenceFactory<E,Void> { 

 

  public PrototypicalSequenceFactory(Sequence<E> prototype) { 

    super(prototype); 

  } 

     

  public Sequence<E> create() { // covariant return type 

    return super.create(); 

  } 

     

  public Sequence<E> createSequence(Void unused) { 

    return this.create(); 

  } 

}               

 

public class PrototypicalRegistry { // registry 

  private final Map<Class<? extends StrictCopyable<?>>,StrictCopyable<?>> prototypes; 

  .. 

 

  public <T extends StrictCopyable<?>> void registerPrototype(Class<T> type, T prototype) { 

    if (type == null) { 

      throw new NullPointerException("Type cannot be null"); 

    } 

    this.prototypes.put(type, prototype.copy()); // defensive copy 

  } 

 

  public <T extends StrictCopyable<?>> T create(Class<T> type) { 

    if (type == null) { 

      throw new NullPointerException("Type cannot be null"); 

    } 

    StrictCopyable<?> prototype = this.prototypes.get(type); 

    if (prototype == null) { 

      throw new NullPointerException("Type not found: " + type.getName()); 

    } 

    T object = type.cast(prototype.copy()); 

    LogFactory.getLog(this).println("Created object from prototype: ", type.getName(), " -> ", object); 

    return object; 

  } 

  .. 

} 

 

Regarding b), the Factory Method implementation also provides an example of how reflection can be used to 

construct a generic factory that can create any type of product, providing the product supplies an appropriate 

constructor. This is illustrated in listing 7.18 below by the abstract factorymethod.Factory<T> class. It also 

illustrates reflective constructor usage. This is used in both Factory Method and Abstract Factory.  

 
 

Listing 7.18 — A reusable reflective factory in Factory Method 
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// Meta classes 

public abstract class TypeLiteral<T> {..} // represents T, which may be generic 

 

public abstract class InstantiableTypeLiteral<T> extends TypeLiteral<T> { // represents T and a given constructor 

   

  private final Constructor<?> constructor; 

   

  protected InstantiableTypeLiteral(Class<?>... parameterTypes) throws NoSuchMethodException { 

    this.constructor = getConstructor(this.type, parameterTypes); // type, i.e. T, set in super constructor 

  } 
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Listing 7.18 — A reusable reflective factory in Factory Method 
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  public T newInstance(Object... arguments) throws Exception { // factory method 

    return (T)this.constructor.newInstance(arguments); // cast is known to be safe, but warnings must be suppressed! 

  } 

  .. 

} 

 

// Factory (abstract) class 

public abstract class Factory<T> extends InstantiableTypeLiteral<T> { // inherits all functionality from Meta classes   

 

  protected Factory(Class<?>... parameterTypes) throws NoSuchMethodException { 

    super(parameterTypes); 

  } 

}            

 

As illustrated, Factory<T> extends the meta.reflect.InstantiableTypeLiteral<T> class that provides 

the actual functionality. The Factory<T> class could have added additional functionality, for example caching 

products to support creation of singleton types, but this is not the case here. Factory<T> thus functions as an 

instantiable type literal and by declaring it abstract, concrete sub—classes must supply the actual type 

parameter used as already described. It can therefore be used to create generic types such as 

meta.model.Sequence<java.lang.Integer>, which is not possible using class literals. The usage is 

interesting enough to warrant listing 7.19, which illustrates usage of concrete Factory<T> objects from the 

abstractfactory.Main test class in the Abstract Factory implementation. While runtime errors may occur if 

used incorrectly, for example if T represents a non—instantiable interface, the usage of type literals help 

enforce type safety at compile—time, even for generic types.  

 
 

Listing 7.19 — Using reflective factories in Abstract Factory 
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// constructor used: int x int (or Integer) 

Factory<SequenceValueRange> fsvr =  

  new Factory<SequenceValueRange>(Integer.class, Integer.class){/*magic*/}; // anonymous sub-class 

 

// constructor used: no-arg 

Factory<MemorizableSequenceAbstraction<Integer>> fmsa =  

  new Factory<MemorizableSequenceAbstraction<Integer>>(){/*magic*/}; // anonymous sub-class 

 

// constructor used: BigInteger 

Factory<FibonacciSequence> ffs = new Factory<FibonacciSequence>(BigInteger.class){/*magic*/}; // anonymous sub-class 

 

// create products of proper type, even if generic, and assemble 

SequenceValueRange svr = fsvr.newInstance(100, 105); 

MemorizableSequenceAbstraction<Integer> msa = fmsa.newInstance(); 

msa.setGenerator(svr); 

 

FibonacciSequence fs = ffs.newInstance(BigInteger.ONE); 

 

Conclusion –– Type literals are not a built—in mechanism, but a very useful technique to represent generic 

types and to create new instances of the represented type in a compile—time type safe manner. Though type 

literals rely heavily on reflection and inheritance, reflection is only used in the type identification and creation 

processes. Creational patterns, except Singleton, can benefit from their usage, but instantiable type literals can 

act as reusable factories on their own. Using type literals will influence the design of pattern participants.  

7.1.2.3. Constructors and Methods 

The use of constructors and methods is closely related to class and type literals. Reflectively invoking 

constructors and in particular methods form the very basis for dynamic proxies as described in the next section. 

Most usage is implicitly covered in sections describing these issues. Method and constructors have object 

representations that can be treated like any other object except for explicit creation (―second—class objects‖). 
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This information is used in the evaluation to identify callers of a given constructor or method, as already 

described in section 7.1.1.5 and illustrated in listing 7.15 on page 104.  

 

Abstract Factory, Factory Method, Prototype, and Proxy use constructors reflectively. Only Prototype uses 

constructors explicitly as illustrated in listing 7.21, all other usage is through instantiable type literals. Type 

literals hide the complexity in getting and executing constructors reflectively, and they provide a uniform 

interface to create instances of a given type. Usage is illustrated in listing 7.18 and listing 7.19. 

 

Observer, Prototype, Proxy, Singleton, and Visitor use methods reflectively. Observer and Singleton use 

annotations to identify methods to execute as notification and singleton methods, respectively. The use of 

annotations is described in section 7.1.2.5, and listing 7.23 on page 115 illustrates how methods are acquired 

and invoked reflectively in the Singleton implementation. Prototype and Proxy reflectively execute methods as 

part of invocation handlers used to determine the behaviour of dynamic proxies as described in the next section. 

This is also illustrated in listing 7.21. Combined with decoration and adaptation, Visitor uses reflective methods 

as a means to make visitation and double—dispatching easier. The Visitor implementation revolves around 

visitable (composite) meta.model.Sequence<E> types that can be visited based on sequence type and/or on 

the type of values delivered by the sequence (E); the latter is the case discussed here. Instead of having to 

define new visitable elements continually, e.g. new visitable Sequence<E> classes, a visitable decorator is used 

to decorate sequence instances to become visitable by using reflection to identify and invoke the actual 

visitation method on the decorated sequence. The decorator is thus adapted to become visitable, but at the 

same time supplies the implementation for the accept(..) method once and for all. The decorator class in 

question is the visitor.ReflectiveVisitableSequence<E> class, and the principle in its usage is 

illustrated in listing 7.20 below. To identify the proper visitation method, the 

ReflectiveVisitableSequence<E> class relies on naming convention for visitation methods. This is error 

prone, and will not find methods for sequences delivering unknown types of values; but such visitable sequences 

can in any case only be visited using the SequenceVisitor.visitUnknown(..) visitation method. Instead of 

throwing exceptions in such a scenario, the decorator will also use visitUnknown(..) for robustness. An even 

more robust alternative could be to use annotations to identify the visitation methods, which would render 

naming conventions obsolete. As already stated, section 7.1.2.5 describes the use of annotations. In general, 

reflective invocation of methods is handled by the meta.reflect.Reflection class as not to clutter pattern 

implementations with verbose reflection code, but as an exception to this rule, listing 7.23 on page 115 

illustrates direct reflective method invocation. 

 
 

Listing 7.20 — Reflective method invocation in Visitor 
 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

 

public interface ValueVisitableSequence<E> extends Sequence<E> { // element, e.g. (composite) sequences 

  public <P> void accept(SequenceValueVisitor<P> visitor, P argument); 

} 

     

public interface SequenceValueVisitor<P> extends SequenceVisitor<P> { // visitor 

  public void visitIntegerValued(Sequence<Integer> sequence, P argument); 

  public void visitDateValued(Sequence<Date> sequence, P argument); 

  .. 

} 

 

public class ReflectiveVisitableSequence<E> extends AbstractVisitableSequence<E> { // decorator making sequence visitable 

  private final Method visitationMethod; 

  private final static Method visitUnknown; 

  .. 



EVALUATING SOFTWARE DESIGN PATTERNS –– EVALUATION MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 111 of 197 

 

Listing 7.20 — Reflective method invocation in Visitor 
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29 
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  public ReflectiveVisitableSequence(Sequence<E> sequence) { 

    super(sequence); 

    TypeLiteral<?> type = TypeLiteral.create(sequence.getClass()); // get type of E, e.g. Integer, Date, etc. 

    Method method = null; 

    try { 

      Class<?> clazz = type.getRawType(); 

      String name = "visit" + clazz.getSimpleName() + "Valued"; // visitation name invariant, may fail and default 

      method = SequenceValueVisitor.class.getMethod(name, Sequence.class, Object.class); 

    } catch (Exception e) {  

      .. 

      method = visitUnknown; // default 

    } 

    this.visitationMethod = method; 

  } 

 

  public <P> void accept(SequenceValueVisitor<P> visitor, P argument) { 

    Reflection.invoke(visitor, this.visitationMethod, this.getSequence(false), argument); // P visitor argument 

  } 

  .. 

} 

 

If the security manager allows it, it is possible to access even private fields, constructors, and methods of a 

class. This can be used to emulate friendship, but is not recommended, as anybody can become a friend in this 

manner. The normal visibility rules prevent the non—accessible part of a type to be hidden at compile—time, so 

compile—time safety is gone. As an example, the Observer implementation can make use of even private 

notification methods. 

 

Conclusion –– Reflectively using methods and constructors are part of the foundation for Java‘s reflective 

capabilities. Any pattern implementation using advanced runtime features like those described by Gamma et al. 

have no choice but to use them, directly or indirectly. This might clutter pattern implementations, but much of 

the functionality can be used in a component—like fashion, such as the type literal Meta classes defined in this 

project. Behavioural patterns with functionality related to dispatch of messages to one or more targets at 

runtime can all use methods reflectively to deliver the messages, like Chain of Responsibility, Command, 

Mediator, Observer, Strategy, and Visitor. In Java, Structural patterns like Adapter and Proxy implemented using 

dynamic proxies rely heavily on the use of reflective methods. Excluding Singleton, Creational patterns can use 

constructors reflectively to create new products. This type of reflective usage only involves reflection in the 

creation process, where after the created products are accessed through their normal type. 

7.1.2.4. Dynamic Proxies 

A powerful feature in Java is dynamic proxies. Dynamic proxies allow Java to exhibit behaviour traditionally 

ascribed to prototype—based languages, such as modifying the type of an object at runtime or even changing the 

implementation of methods at runtime. No byte—code manipulation is involved. Compile—time safety is still 

adhered to as all access to proxy functionality is through compile—time known interfaces, while runtime 

exceptions may occur at the time of invocation. Their usage is not just of theoretical interest, albeit we admit 

that we rarely have used them in production environments. For example, annotation classes acquired at runtime 

are implemented using dynamic proxies in Java. In realistic environments, runtime errors originating because of 

proxy usage are rare, because they mostly represent programmer errors. Errors originating in non—proxy objects 

will still occur in proxied objects, naturally, but this is unavoidable. Dynamic proxies are subject to a rather 

large number of semantic rules defined by the java.lang.reflect.Proxy class, some of the most important 

ones being that they all inherit Proxy; can only implement interface behaviour; and follow the standard rules of 
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the instanceof operator. Please refer to Sun‘s JavaDoc for further information. An implication is that they 

cannot always be used in a given pattern implementation, for example Creational patterns using covariant 

return types like the Builder implementation from listing 7.12 on page 99. This is because Builder in certain 

cases has to use covariant return types to return concrete types that do not have a defining interface.  

 

As illustrated in table 7.1, Adapter, Prototype, Proxy, and State use dynamic proxies in this evaluation, but 

dynamic proxies could have been applied in numerous other patterns as well. Examples include Bridge in order 

to change the implementation transparently; changing the strategy by changing the behaviour of the Strategy 

type (proxy) at runtime; or in Chain of Responsibility to forward requests not understood. Below, listing 7.21 

illustrates how the Prototype implementation uses dynamic proxies to allow any type implementing a copy 

constructor to become prototype.Copyable<T> at compile—time, if not already. The 

prototype.StrictCopyable<T> type cannot be used here because T cannot be guaranteed to be copyable. 

Copying is performed by supplying the proxied instance as an argument to its own copy constructor when the 

copy() method is invoked. The call to copy() is automatically intercepted (line 18-20) by an invocation 

handler because the context will access the dynamic proxy, not the proxied instance. All other methods are 

forwarded to the proxied object (line 22), somewhat akin to the Gamma et al. examples utilising 

doesNotUnderstand in Smalltalk. This corresponds to adaptation, but static class—based adapters (proxies) 

can often be a viable alternative for simple dynamic proxies, especially if combined with decorators. 

 
 

Listing 7.21 — Dynamic proxies in Prototype 
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public class PrototypeFactory { 

  private final static ProxyFactory factory = new ProxyFactory(); // factory creating java.lang.reflect.Proxy instances 

  private final Method copy; // reference to the Copyable.copy() method 

  .. 

  public <T> T getPrototypicalObject(Class<T> type, final T object) { // must assign proxy to an interface!!! 

    if (object instanceof Copyable) { // already copyable? 

      return object; 

    } 

    final Constructor<T> constructor = Reflection.getCopyConstructor(type); // get copy constructor (closure usage) 

    if (constructor == null) { 

      return null; 

    }  

    Set<Class<?>> interfaces = new LinkedHashSet<Class<?>>(); 

    interfaces.add(Copyable.class);                      // add Copyable interface first... 

    Reflection.getInterfaces(type, interfaces);          // ...and then all interfaces implemented by type 

         

    InvocationHandler handler = new InvocationHandler() { 

      public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { 

        if (PrototypeFactory.this.copy.equals(method)) { // intercept call to copy()... 

          return constructor.newInstance(object);        // ...and use copy constructor instead 

        } 

        return Reflection.invoke(object, method, args);  // forward all other calls to "object" 

      } 

    }; 

    return factory.getProxy(object, handler, interfaces.toArray(new Class<?>[interfaces.size()])); // create proxy 

  } 

  .. 

} 

 

The Proxy implementation uses complex dynamic proxies to comply with most proxy functionality described by 

Gamma et al. Four different types of proxies are described in the Proxy description, namely remote proxies, 

virtual proxies, protection proxies, and smart references [Gamma95, p.208-209]. The evaluation implements all 

but remote proxies. A virtual proxy allows a meta.model.Sequence<E> to be created only when the first 

method defined in Sequence<E> interface is invoked, and a protection proxy will deny access to certain 

Sequence<E> methods. More realistically, dynamic proxies are used for smart references to force 

synchronisation on access to a proxied object, and to allow sharing of objects until a mutator method is 
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invoked. The latter corresponds to the well—known C++ Handle/Body idiom described by Coplien and 

paraphrased by Gamma et al. in the Bridge pattern [Gamma95, p.155-156]. Though it has probably been done 

before, we have never seen a transparent and reusable implementation of Handle/Body in Java11. The 

proxy.Main class in the Proxy implementation provides numerous examples of proxy usage. The 

meta.reflect.proxy package forms the base of all the functionality just described, for example the 

meta.reflect.proxy.Reference<T> class.  

 

State uses dynamic proxies to imitate dynamic inheritance as described by Gamma et al. [Gamma95, p.309]. The 

state.StepSequence is an interface that publicly is only implemented as a dynamic proxy. The sequence 

(proxy) will change its implementation when the sequence value goes from even to odd or vice versa. These two 

states are represented by two different sequence implementations, state.EvenSequence and 

state.OddSequence, and an instance of the appropriate sequence will be set as the target object for all 

meta.model.Sequence<E> methods that are executed reflectively, but transparently, by the dynamic proxy. 

The same super type is used here, but it is not required. Hence, this technique is the foundation for duck typing 

in Java 6: ―If it walks like a duck, if it quacks like a duck, it must be a duck‖ [Orme05]. 

 

Conclusion –– Java has built—in support for the Proxy pattern via dynamic proxies. Dynamic proxies depend 

heavily on reflection, especially reflectively invoking methods. The evaluation shows that dynamic proxies can 

be used to implement much of the alternative pattern implementations described by Gamma et al., but usage 

may change the implementation of the pattern participants considerably and cause unforeseen consequences. 

Structural patterns such as Adapter, Proxy, and to a lesser extent Bridge and Decorator, can benefit from 

dynamic proxies. Behavioural patterns can also benefit from dynamic proxy usage because it allows the 

behaviour to change at runtime as clearly illustrated by the State implementation. 

7.1.2.5. Annotations 

Annotations are used in the implementations of Abstract Factory, Builder, Factory Method, Interpreter, 

Observer, Singleton, Template Method, and Visitor, but are versatile and useful enough to be applied to 

practically all pattern implementations. The evaluation uses annotations for three different purposes: 

 

1. As compiler hints: @Override and @SuppressWarnings annotations from the java.lang package; 

2. For runtime functionality combined with reflection, for example the singleton.@Singleton 

annotation from the Singleton implementation; and 

3. For (static) documentation purposes in order to identify pattern participants described by Gamma et 

al., for example the @Participant annotation from the meta package. This is illustrated in listing 

7.23, but this usage is not included in table 7.1. JavaDoc elements can also be considered annotations; 

all developed source code is fully documented using JavaDoc, including non—public members. 

                                                      

 
11

  There are a few issues with the current Handle/Body implementation, e.g. with equals(Object). This is because the 

check for the specific type will fail for proxies; the type is java.lang.reflect.Proxy, not the actual proxied type. 
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Regarding item one, patterns relying on sub—classing, especially with Class scope, can benefit from the 

@Override annotation. This is not related to reflection usage, but we include it here for completeness. The 

compiler will generate an error if the annotation type is used to annotate a method that does not override a 

super—class method, including abstract methods12. As a design evolves, classes and methods change. The 

@Override method can signal that a method intended to override a super—class method no longer can or does 

so. This could lead to unexpected behaviour if the overridden method was a hook operation with default 

behaviour not appropriate for the sub—class in question. Abstract Factory, Builder, Factory Method, Interpreter, 

Memento, Template Method, and Visitor use this annotation and listing 7.22 illustrates the usage in Builder. 

 
 

Listing 7.22 — Annotations as compiler hints in Builder 
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public class StandardExpressionBuilder<E> extends AbstractExpressionBuilder<E> implements ExpressionBuilder<E> { 

 

  public Expression<Boolean> buildOrExpression(Expression<Boolean> first, Expression<Boolean> second) { 

    Expression<Boolean> expression = new OrExpression(true, first, second); 

    LogFactory.getLog(this).println("Building OR (||) expression: ", expression); 

    return expression; 

  } 

  .. 

} 

 

public class CountingExpressionBuilder<E> extends StandardExpressionBuilder<E> { 

 

  protected <V,W extends Expression<V>> W count(W expression) {..} 

 

  @Override // will generate compiler error if this method does not override a method from a super-class 

  public Expression<Boolean> buildOrExpression(Expression<Boolean> first, Expression<Boolean> second) { 

    return this.count(super.buildOrExpression(first, second)); 

  } 

  .. 

}               

 

The @SuppressWarnings annotation is used to suppress compiler warnings, typically unchecked casts in 

connection with generics. The warning does not aid the robustness of the pattern implementations, but its usage 

may indicate potential problems. However, its presence is not necessarily a sign of trouble as unchecked casts 

cannot always be avoided [Langer06, p.270]. Listing 7.14 on page 103 provides an example of its usage. 

 

Two specific annotation types have been created that use a runtime retention policy and can thus be queried 

reflectively (item two): the @Singleton and @Executor annotations defined in the singleton and 

meta.reflect packages, respectively. They are used to identify a given method to invoke reflectively, but in 

different ways. @Singleton is applicable to types only, e.g. classes, interfaces, annotations, and 

enumerations, where @Executor is applicable only to constructors and methods. @Singleton is used to 

identify the static singleton method to invoke to acquire the singleton instance for the annotated singleton type. 

As the Singleton pattern is instance, and thus type, centric, the logical design choice is to make @Singleton 

applicable to types only. The annotation effectively identifies the annotated type as a singleton type as well. 

This can enhance the documentation of the singleton type and clarify pattern intent, but the information can 

also be used runtime. @Executor is for general usage and can therefore identify any type of method or 

constructor, even private ones if the security manager allows it. It can also identify several methods and/or 

                                                      

 
12

  In Java 5, the @Override annotation can only be applied to a method overriding a method from a super class, while as of 

Java 6, the annotation can also be used on methods implementing a method declared in an interface [Bloch08, p.178]. We 
only use the annotation on (non—abstract) methods overriding a (non—abstract) method from a super class. 
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constructors in the same type, possibly used by several different contexts; it can be seen as a generalisation of 

the @Singleton annotation.  

 

The singleton.StatelessSingletonRegistry<T> class is a stateless singleton registry that deliver 

singleton instances using their own singleton method identified via the @Singleton annotation; forwarding via 

reflection. All actual singleton types in the Singleton implementation are annotated with @Singleton and the 

registry can thus handle unrelated singleton types, regardless of how they are implemented and initialised. For 

example, singleton.SimpsonsFamilySequence is a singleton class using its static getFamily() method to 

return the singleton instance, while singleton.DanishAlphabetSequence is a singleton implemented using 

enumerations and therefore inherits the static java.lang.Enum.valueOf(java.lang.String) method. 

They can both be acquired in a uniform way using a StatelessSingletonRegistry<T> instance because 

@Singleton is used to specify the different singleton methods for the two types. This is illustrated in listing 

7.23 below. For the Singleton implementations in this evaluation, an annotation is preferred over an interface, 

because different singleton types in general offer no common functionality except for conceptual behaviour in 

form of only a single instance available. The singleton method must in any case be static, and interfaces cannot 

declare static methods. More so, if a common super—type is required for all singleton types used by a registry, 

the registry is generic with an upper bound on such a type for this very purpose (java.lang.Object handles 

all). Hence, annotation functionality can be combined with standard use of interfaces and generics.  

 
 

Listing 7.23 — Annotation usage in Singleton 
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@Participant("Singleton") 

@Singleton("getFamily") 

public class SimpsonsFamilySequence extends ArraySequence<String> { 

   

  public static SimpsonsFamilySequence getFamily() {..} 

  .. 

  private SimpsonsFamilySequence() {..} 

  .. 

} 

 

@Participant("Singleton") 

@Singleton(value = "valueOf", arguments = "Instance") // valueOf inherited from java.lang.Enum<DanishAlphabetSequence> 

public enum DanishAlphabetSequence implements Sequence<String> { 

 

  Instance; // single constant 

  .. 

  private DanishAlphabetSequence() {..} 

  .. 

} 

 

public class StatelessSingletonRegistry<T> implements SingletonRegistry<T> { 

   

  public <S extends T> S getInstance(Class<S> type) { 

    Singleton singleton = type.getAnnotation(Singleton.class); 

    if (singleton == null) { 

      throw new SingletonException(type); // potential runtime problems 

    } 

    try { 

      String singletonMethod = singleton.value(); // fetch singleton method name 

      Object[] arguments = singleton.arguments(); // fetch fixed string arguments, if any 

      .. 

      Method method = type.getDeclaredMethod(singletonMethod, parameterTypes); // arguments.length * String 

      S instance = type.cast(method.invoke(null, arguments)); // static, no target 

      return instance; 

    } catch (Exception e) { // potential runtime problems 

      throw new SingletonException(e); 

    } 

  } 

  .. 

} 

 

The Observer implementation makes use of the @Executor annotation to identify notification methods for 

Observer participants to be stored in an observer.ObserverManager instance. Observers do not need to 



EVALUATING SOFTWARE DESIGN PATTERNS –– EVALUATION MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 116 of 197 

implement a common interface. As always, reflection can cause numerous runtime errors. The 

ObserverManager class uses a pluggable error handling strategy to determine how errors should be processed 

in case of notification errors. To improve type safety, the ObserverManager could be used via composition, 

wrapped behind methods to add, remove, and especially to notify observers. The abstract 

observer.AnnotatedObserversSequence<E> class shows an example of this. Another plus is that a generic 

interface cannot be implemented more than once with a different type parameter because of type erasure. For 

example, a sequence observer type cannot implement observer.SequenceObserver<java.lang.String> 

and SequenceObserver<java.lang.Integer>. Annotations can solve this. By letting the class implement 

standard overloaded methods with proper types without the use of generics, annotations can identify two, or 

more, different notification methods in the same class.  

 

Though not implemented during the evaluation, several other patterns have been identified where annotations 

could be applied in a manner similar to Observer (and Singleton). The Chain of Responsibility implementation 

uses regular interfaces to represent handlers, but could have used annotations. The two implementations can 

thus be considered representations of two separate approaches to implement the container—like pattern 

functionality, or they can be combined as shown in the Singleton implementation. Other examples include the 

Visitor and Prototype implementations. Visitor avoids a static compile—time double—dispatch relationship in the 

visitor.ReflectiveVisitableSequence<E> class by using reflection based on naming conventions for 

visitation methods, but @Executor can be used as an alternative to identify the visitation method. The 

Prototype implementation uses dynamic proxies to allow any type implementing a copy constructor to become 

prototype.Copyable<T>, but @Executor can be used to specify any method or constructor with a matching 

signature. 

 

Finally, though not part of the evaluation as such, the usage of annotations to annotate pattern participants has 

proven itself useful in our opinion (item three); the annotations are defined in the meta package. The two 

singleton types from listing 7.23 above illustrate example usage of the @Participant annotation, identifying 

the types as representing the Singleton participant from the Singleton pattern (implicitly in form of the 

singleton package). The annotations are all annotated with the @Documented annotation from 

java.lang.annotation, which prompts their precise points of application to become visible in generated 

JavaDoc. Identifying the individual pattern participants is therefore easy. This is important because Gamma et 

al. emphasise the need for maintainability: dynamic software is hard to understand, but clear identification of 

pattern participants can aid in the understanding (see section 2.1.2 on page 18). The defined annotations are all 

retained at runtime, which is currently not used, though. The original idea was to prime Sun‘s Annotation 

Processing Tool (APT) with a handler that would traverse the source code statically to gather information about 

participants, thereby generating a summary of pattern usage, perhaps even compiling code that could be 

utilised at runtime to enhance pattern support. This has not been completed, though.  

 

Conclusion –– Annotation usage help express pattern intent, and can be used in several different and 

interesting ways. The evaluation shows that annotations can be used statically to identify pattern participants, 

thereby clarifying the intent of the implementation. They can even enforce the semantics of patterns relying on 
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inheritance and method overriding. At runtime, annotations combined with reflection can be a flexible 

augmentation and/or alternative to using interfaces if polymorphism among instances is not required; the cost is 

moderately degraded performance and, if not used wisely, the possibility of runtime errors. Creational and 

especially Behavioural patterns are the best suited match for runtime annotation usage.  

7.1.2.6. Summary 

We have illustrated and exemplified how the pattern behaviour described in the introduction of section 7.1.2 

can be implemented in Java 6. Java‘s reflective capabilities allow pattern implementations to use features the 

canonical C++ implementations cannot while still maintaining compile—time safety. Class literals is the feature 

most used because of its wide applicability pertaining to type safety, structural Meta Data, and class loading, 

while type literals are used for type safety involving generic types. Annotations offer exiting new possibilities 

that the Java community has only just begun to explore, and we have shown how annotations can influence 

many of the ―Gang of Four‖ patterns, especially Behavioural ones. However, many of the features could have 

been used in practically all implementations, but the evaluation only supplies example usage in selected pattern 

implementations as reported in table 7.1 on page 82. The evaluation also provides heavy use of the Meta classes 

developed, especially the meta.reflect and meta.reflect.proxy packages. 

7.1.3. Special Language Mechanisms 

This section describes special language mechanisms available in Java used in the evaluation that can influence 

the pattern application. The features include synchronisation, serialization, cloning, class loaders, and weak 

references.  

7.1.3.1. Synchronisation 

In general, the ―Gang of Four‖ patterns do not address concurrency issues. C++ has no similar construct as the 

synchronized statement in Java13 [Gosling05, p.395]. The java.util.concurrent and sub—packages 

furthermore provide extensive library support for semaphores, concurrent collection types, threaded execution 

(which at least Observer could benefit from), and much more. The evaluation only uses the synchronized 

statement and finds it overkill to use the java.util.concurrent utilities. A general discussion about writing 

concurrent programs is not undertaken as this is a monstrous task by it self; the second volume of the ―POSA‖ 

patterns, for example, is solely dedicated to patterns pertaining to concurrent behaviour [Schmidt00]. 

 

In our view, well—made designs should express synchronisation by choice, not by design unless absolutely 

necessary. In real—life systems, when not to synchronise can be just as important as when to synchronise. The 

evaluation tries to convey this. Synchronisation implies an overhead that in most cases probably can be avoided; 

Bloch estimates an overhead from anywhere between five to twenty percent [Bloch01, p.199]. There is no 

reason, for example, to declare a general container type as synchronised. This is surely one of the reasons the 

                                                      

 
13

  Synchronisation is an implementation issue. Because of this, JavaDoc does not document if a given method is synchronised 

or not (internal locks are often preferred anyways). The only way to tell if an implementation is thread—safe is to read the 
human—written (JavaDoc) documentation, if provided. 
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java.util.Vector<E> and java.util.Hashtable<K,V> classes from Java 1.1 are practically deprecated 

in favour of newer non—synchronised container (collection) types such as java.util.List<E> and 

java.util.HashMap<K,V>, respectively. Instead, the java.util.Collections class provides factory 

methods to create synchronised (thread—safe) versions of various collections supplied as arguments. 

Incidentally, this corresponds to the Proxy pattern, where the thread—safe collection types are smart reference 

proxies. Analogous to this, there is no reason to declare container—like pattern participants synchronised unless 

necessary.  

 

The Bridge, Chain of Responsibility, Facade, Factory Method, Flyweight, Memento, Proxy, Singleton, and 

Template Method implementations use some form of realistic and/or illustrative use of synchronisation. Bridge 

and Proxy use synchronisation to create specialisations with the purpose of enforcing thread—safe behaviour. 

The bridge.SynchronisedSequenceAbstraction<E> class is a refined thread—safe abstraction, while the 

proxy.SynchronisedSequence<E> proxy is a smart reference that allows any sequence to be used in a 

thread—safe manner. Synchronisation is thus a design choice that defines the actual behaviour conveyed by the 

pattern. The use of synchronisation in the Bridge implementation to express pattern functionality is illustrated 

below in listing 7.24. Synchronisation proxies, including dynamic ones, can specify the object to use as the lock 

to avoid synchronising on the actual proxy instance it self. This can be useful to help prevent dead—locks as no 

other object can synchronise on the lock in question, providing the context using the proxies supply appropriate 

lock objects. 

 
 

Listing 7.24 — Synchronisation expressing pattern functionality in Bridge 
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public class SequenceAbstraction<E> extends AbstractSequence<E> implements Sequence<E> { 

  .. 

  public SequenceAbstraction<E> setGenerator(SequenceValueGenerator<? extends E> generator) { 

    .. 

    this.generator = generator; 

    this.current = this.generator.first();  

    this.state = State.START; // valid state 

    return this; 

  } 

 

  public E next() { 

    .. 

    this.current = this.generator.get(); 

    .. 

    return this.current; 

  } 

  .. 

} 

 

public class SynchronisedSequenceAbstraction<E> extends SequenceAbstraction<E> { // abstraction is thread-safe! 

  .. 

  public synchronized SequenceAbstraction<E> setGenerator(SequenceValueGenerator<? extends E> generator) { 

    return super.setGenerator(generator); 

  } 

 

  public synchronized E next() { 

    return super.next(); 

  } 

  .. 

} 

 

Chain of Responsibility and Memento synchronise when internal state is updated. This is a design choice, which 

could have been made differently, keeping the above discussion in mind. The rest of the patterns using 

synchronisation illustrate that Java‘s built—in synchronisation mechanism is a powerful tool that can aid the 

overall design and make the pattern implementations more robust at little cost development—wise in simple 

implementations. Facade ensures that the sub—system classes it uses are created and accessed correctly. This is 
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vital as all access to sub—systems go through it, but even more so if it is implemented as a Singleton, which is 

usually the case (including here) according to Gamma et al. [Gamma95, p.193]. Below, listing 7.25 illustrates 

the use of synchronisation in the Facade implementation.  

 
 

Listing 7.25 — Synchronisation in Façade 
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public class MathFacade { 

  .. 

  public synchronized int getNthPrimeNumber(int n) { 

    .. 

    // lazy initialisation requires synchronisation 

    if (this.primes == null) { 

      this.primes = new ReversiblePrimeSequence(100); 

    } 

    // usage, which may "grow" the prime sequence by creating a new sequence 

    .. 

  } 

 

  public int getAckermannNumber(int m, int n) { 

    .. 

    AckermannSequence as = null; 

    // lazy initialisation requires synchronisation 

    synchronized (this.ackermann) { 

      if ((as = this.ackermann.get(m)) == null) { 

        this.ackermann.put(m, as = new AckermannSequence(m)); 

      } 

    } 

    synchronized (as) { 

      // usage, synchronised per sequence instance 

      .. 

    } 

  } 

 

  public BigInteger getNthFibonnaciNumber(int n) {..} // synchronisation not required 

  .. 

} 

 

Flyweight has to synchronise in the flyweight.CharacterFactory class in order to ensure proper sharing of 

flyweight objects as this goes to the very core of the pattern functionality, but synchronisation is only enforced 

when absolutely necessary, on a per method basis. The Factory and Template Method patterns applied in the 

meta.log.LogManager class use synchronisation to ensure a given log is only created once. The 

meta.reflect.proxy.ReferenceHandler<T> class is a smart reference proxy used to share objects aided 

by the meta.reflect.proxy.ProxyFactory class (Handle/Body idiom). Synchronisation has to be enforced 

to ensure that the reference count is correct. The semantics of the java.lang.Object.wait() method 

forces the singleton.StatefullSingletonRegistry<T> to acquire the lock on the object on which it 

wishes to invoke wait(); this is related to Java, not to the core pattern functionality. 

 

The standard Template Method implementation, however, does not synchronise calls to ConcreteClass 

participants. Primitive operations and hooks are alien methods that the AbstractClass participant has no control 

over: invoking them from a synchronised context is potentially dangerous [Bloch01, p.196]. Schmidt et al. offer 

a variant of the Singleton pattern that uses the Double—Checked Locking Optimisation [Schmidt00, p.353] 

pattern to allow lazy initialisation of Singleton instances, which could not be implemented in Java prior to 

version 5 [Bacon; Bloch08, p.283-284]. The dk.rode.thesis.singleton.SmileySequence class show an 

example implementation using synchronisation and the volatile modifier to achieve double—checked locking. 

Generally in Java, fortunately, lazy initialisation of singletons can be achieved in most cases without the use of 

synchronisation, for example as illustrated in listing 7.9 or listing 7.15. Observer does not use synchronisation, 

but the general observer.ObserverManager class is designed primarily for aggregate usage. It could be 

made thread—safe by the Proxy implementation, or by using inner class adapters. 
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Conclusion –– Writing concurrent programs is never an easy task, but Java has great built—in support to aid 

correct concurrent behaviour. For the simple canonical pattern implementations presented by Gamma et al., we 

believe that similar Java implementations can all be made thread—safe using the synchronized statement 

without the need for additional concurrency libraries. The need for realistic thread—safe pattern behaviour will 

depend on the context at hand. Patterns that do not rely on inheritance or on heavy use of composition are 

easier to implement because they have complete control over all code executed within critical regions. 

7.1.3.2. Serialization 

Three patterns use Java‘s built—in serialization mechanism [Sierra06, p.443-457], namely Bridge, Memento, as 

well as Singleton when implemented using enumerations. The Bridge implementation employs serialisation in a 

somewhat unorthodox manner, while Memento and Singleton usage is straightforward. Only Memento and 

Singleton can be considered proper use, but serialization in Singleton is not core pattern functionality. It is 

included to illustrate that singleton types can be made serializable in Java. Note, however, that additional 

singleton instances may be created during deserialisation of normal singleton types, which must naturally be 

discarded by the singleton class. Thus, the context will never see more than a single instance.  

 

Instead of explicitly using the memento.SequenceMemento<E> class, the Memento implementation uses 

serialization as an alternative way to save the state of memento.RangeSequence objects. This is illustrated in 

listing 7.26 below. The advantage of using the serialization framework is that it provides a standard way of 

representing object state. It also includes support for JavaDoc, but this is because the serialized representation 

becomes part of the exported interface. The downside is that serialization semantics is not as trivial as many 

people think. Bloch dedicates an entire chapter in [Bloch01] to problematic issues related to serialization. 

Regarding Memento functionality, the main problem is that it creates new objects and does not update the 

internal state of an existing object. Using the Bridge pattern can circumvent this by only serializing the 

Implementation participant. Validation of deserialized data must still be explicitly enforced as deserialization 

can be considered equivalent to a constructor [Bloch01, p.228]. Hence, both serialization and memento objects 

must explicitly enforce their internal state invariants, but because Memento updates an existing object, it must 

always enforce the invariants before it updates its state or failure atomicity cannot be guaranteed. This is 

important, as any form of serialisation mechanism is error prone, i.e. unexpected versions and/or types, illegal 

formatting, I/O errors, unexpected deserialized values, etc.  

 
 

Listing 7.26 — Serialization in Memento 
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public class RangeSequence extends AbstractSequence<Integer>  

  implements ReversibleSequence<Integer>, Serializable, MemorizableSequence<Integer> { 

  .. 

 

  public RangeSequence(int start, int end) { 

    super(false); 

    validate(this.start = start, this.end = end, this.sequence = this.start); // validate 

    .. 

  } 

   

  private static void validate(int start, int end, int sequence) {..} // throws exception if illegal range 

 

  public SequenceMemento<Integer> getMemorizableState() { // create memento 

    return new GuardedSequenceMemento<Integer>(this); 

  } 

 

  public void setMemorizableState(SequenceMemento<Integer> memento) throws MemorizableException { // use memento 

    try { 

      RangeSequence sequence = (RangeSequence)memento.getSequence(); // acquire memento state 
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Listing 7.26 — Serialization in Memento 
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      // enforce internal state invariants for failure atomicity 

      if (sequence.sequence < this.start) { 

        throw new MemorizableException(memento); 

      } else if (this.bounded()) && (sequence.sequence > this.end)) { 

        throw new MemorizableException(memento); 

      } else if {..} 

      .. 

      // update this instance 

      this.sequence = sequence.sequence; 

      this.state = sequence.state; 

      .. 

    } catch (Exception e) { 

      throw toThrowableType(e, MemorizableException.class); 

    } 

  }   

 

  private void writeObject(ObjectOutputStream out) throws IOException { // serialize 

    out.writeInt(this.start); 

    out.writeInt(this.end); 

    .. 

  } 

 

  private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { // deserialize 

    // implicitly create a new instance and validate 

    validate(this.start = in.readInt(), this.end = in.readInt(), this.sequence = in.readInt()); 

    .. 

  } 

} 

 

According to Gamma et al., a Bridge implementation will use aggregation between the Abstraction and 

Implementation participants, with Abstraction as the aggregator and Implementation as the aggregatee 

[Gamma95, p.153] (see table 2.2 on page 15). This implies a copy of the Abstraction will imply a copy of the 

Implementation. The Abstraction participant is represented by the bridge.SequenceAbstraction<E> class 

and the Implementor by the bridge.SequenceValueGenerator<E> interface. The abstraction represents an 

abstraction of the meta.model.Sequence<E> type, which is prototypical and can be copied. The 

bridge.SequenceValueCollection<E extends Serializable,C extends Collection<E>> class is 

a specialisation of SequenceValueGenerator<E> that delivers values of type E stored in a specific 

java.util.Collection<E> class specified by the type parameter C. By demanding that the value type is 

serializable, deep copying becomes easy for any sub—class of SequenceValueCollection<E,C> because all 

collection classes in the java.util package implements java.io.Serializable. When a 

SequenceValueCollection<E,C> instance is copied, the internal collection of type C is simply serialized, 

then deserialized to yield a new C instance containing new E instances as well. The structure of the values in 

the original collection is adhered to as serialization maintains relative object identity in serialized object graphs 

[Sierra06, p.446]. Enumerations and arrays are also handled automatically [Gosling05, p.288]. The choice to use 

java.io.Serializable as the bound for E as opposed to java.lang.Cloneable is because most types in 

the Java API are serializable, while few are cloneable. Using Cloneable would not allow sequence value types 

such as java.lang.Integer, java.lang.Long, and java.util.Date since they are not cloneable, and the 

clone operations for the collections in java.util do not perform deep copy of the collection values. 

Serialization is not cheap, but a deep copy in any case requires a traversal of all collection values. According to 

Bloch, however, serialization should be used with caution for a myriad of reasons such as design maintainability 

and security issues [Bloch01, p.214-218] and we seriously doubt this usage falls within the approved category. 

We would not release a real—life system utilising serialization in this manner, but it nonetheless illustrates how 

powerful serialization can be. It also illustrates a subtle difference between Memento and serialization in 

ordinary use: Memento objects are handled in memory by the Caretaker participant, for example as an undo 

mechanism in Command as illustrated in this evaluation, where serialization is a mechanism used for 
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persistence, storing bytes and not objects.  

 

Conclusion –– In this thesis, serialization is only used for core pattern behaviour in the Memento 

implementation. Serialization has external Object scope, while Memento has internal Object scope in that it 

updates existing objects. Memento focuses on in—memory state, where serialization focuses on externalised, 

persistent state. Whether or not this is an acceptable design change is entirely dependent on the system at 

hand, but if object identity is paramount, it cannot directly be used in place of Memento.  

7.1.3.3. Cloning 

Even though Java has built—in support for the Prototype pattern via the java.lang.Cloneable interface with 

associated runtime extra—linguistic creation procedures (no constructor is called [Bloch01, p.45]), we have 

rarely used it. This evaluation turned out no different. This is because the Cloneable interface is a marker 

interface that does not define an actual clone method, but still demands that cloneable types must override the 

protected clone() method from java.lang.Object publicly. Cloning a polymorphic collection of 

Cloneable objects, for example, can therefore only be performed reflectively (and might still fail). More so, 

cloneable objects cannot be used in Creational patterns such as Abstract Factory and Builder without knowing 

the explicit type.  

 

The Prototype implementation defines the prototype.Copyable<T> interface that can be implemented by 

prototypical types, or the prototype.StrictCopyable<T> sub—type that requires that T is copyable itself. 

The interface defines a copy() method that must return a copy of the instance in question. Prototypical types 

will in their copy() declaration or implementation specify the actual implementing type as the return type, T, 

and sub—classes of the given type will refine the type even further using covariant return types (as described in 

section 7.1.1.6 on page 97). The copying has to be done manually, but by consistently supplying copy 

constructors, prototyping becomes easy as the copy() method simply creates and returns a copy using the copy 

constructor. As illustrated in listing 7.27 below, the prototype.SymbolSequence class is both copyable and 

cloneable. All sequence types implemented in the evaluation are inherently copyable as 

meta.model.Sequence<E> extends StrictCopyable<Sequence<E>>, but not cloneable unless explicitly 

declared so. This poses a ―small‖ problem with singleton sequence types, because copying must naturally be 

disallowed for singleton types. The solution used is to return the same singleton instance, but returning null 

could have been an alternative, or throwing an exception (like java.lang.CloneNotSupportedException 

from clone()). Returning the same instance can lead to unpredictable results if the context rely on object 

identity. In our view, this illustrates a general design problem with Singleton. We believe that Singleton is 

commonly overused, especially within frameworks. Relying on identity in favour of equality should rarely be the 

case. Who cares if the system only has one printer spooler as long as the system provides a way to acquire a fully 

functional spooler? Singleton or otherwise, the spooler object is still used as any other object once acquired. 

This is a context dependent design preference.  

 

The non—singleton class singleton.MutatedSimpsonsFamilySequence is cloneable even though it inherits 

the singleton.SimpsonsFamilySequence singleton that is not cloneable. 
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public class SymbolSequence extends ArraySequence<CharSequence> implements Cloneable { 

  .. 

  public SymbolSequence(SymbolSequence sequence) { // copy constructor 

    super(sequence); // call super-class copy constructor 

  } 

     

  public SymbolSequence copy() { // specified by interface 

    return new SymbolSequence(this); 

  } 

 

  public SymbolSequence clone() { // not specified by interface 

    try { 

      SymbolSequence sequence = (SymbolSequence)super.clone(); // extra-linguistic creation 

      sequence.index = this.index; 

      sequence.state = this.state; 

      return sequence; 

    } catch (CloneNotSupportedException cnse) {  

      throw new InternalError(cnse.getMessage()); 

    } 

  } 

  .. 

} 

 

Prototypical objects are used extensively throughout the evaluation, not only for Sequence<E> types. The 

Command and Interpreter implementations also rely on prototypical behaviour, and more importantly rely on it 

in a polymorphic fashion through the StrictCopyable<T> interface. Creational patterns also benefit from the 

use of a real interface compared to a marker interface. Using java.lang.Cloneable is therefore not a viable 

alternative, as it would have made several pattern implementations more difficult. 

 

Conclusion –– The evaluation shows that it is preferable to implement prototypical behaviour by design rather 

than relying on Java‘s built—in support for Cloneable. This ensures that pattern participants can access 

prototypical functionality directly through interfaces as opposed to using reflection or concrete types.  

7.1.3.4. Class Loader and Weak References 

Several ―Gang of Four‖ pattern descriptions discuss ownership of objects, primarily for Behavioural container—

type like patterns such as Composite [Gamma95, p.169], Flyweight [Gamma95, p.200], Iterator [Gamma95, 

p.266], and Observer [Gamma95, p. 297]. Focus is on memory management, but also on aggregation and 

composition in general. As Java supports garbage collection, ownership is generally less important compared to 

C++, but should still not be neglected. By using weak references, a container can declare that it does not own 

contained types. Weak references allow an object, say X, to keep a reference to another object, Y, which will 

not prevent Y from being garbage collected. Java‘s Collections Framework has direct support for weak 

references via the java.util.WeakHashMap<K,V> class, which is map storing keys of type K as weak 

references associated with a value stored as a hard reference, V. 

 

Weak references are used directly in the Chain of Responsibility, Observer, and Proxy implementations, but also 

in Meta classes. The Proxy implementation stores proxied objects as weak references in the proxy factory. This 

ensures that if the context no longer references the proxy, the proxied object may be garbage collected 

(internally, proxies store a reference to the proxied object). This is analogous to Observer, where the 

observer.ObserverManager class only stores observers as weak references. The implementation 

automatically handles if an observer goes out of scope, but it also implies that anonymous observers (adapters) 

created on—the—fly, for example as an argument when the observer is registered, should not be used because 
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they are eligible for garbage collection at any time. Using weak references implies more work on the part of the 

developer, and can cause surprising behaviour in clients using the patterns as explained. In the Chain of 

Responsibility implementation, the chainofresponsibility.WeakHandlerChain<R> component illustrates 

similar functionality as it stores handlers as weak references. An example where weak references should not be 

used is in the meta.log.LogManager class, which is implemented using Factory and Template Method. Logs 

are often not stored as member attributes in the class(es) they are used by, but acquired via static methods 

before use, e.g. LogManager.getLog(java.lang.Class). Hence, acquisition of a log associated with a 

given class is likely to cause a new log to be created frequently because immediately after usage, the log is 

eligible for garbage collection. File system loggers could thus represent a serious performance problem. An 

alternative is to use cache—like behaviour with timeout functionality to close and discard inactive logs. The 

problem is that the log manager has no way of knowing how clients internally store the logs, if at all. Keeping 

only weak references to created logs therefore seems troublesome.  

 

Conversely, in the Singleton implementation, the singleton.StatefullSingletonRegistry<T> allows 

singleton types to stay in memory even after the class loader that created the class has been garbage collected. 

Classes can be loaded without explicitly using a class loader via class literals. This can be of utmost importance 

because any class is only a singleton per class loader (see JavaDoc for java.lang.ClassLoader). This is not 

just of theoretical interest as for example servlet containers often use more than one class loader. To cope with 

such situations, the singleton.LoadableSingletonRegistry<T> is a state full registry that allows 

singleton types to be dynamically loaded using the same class loader, while still enforcing the generic bound T 

using type literals. This is illustrated in listing 7.28 below. 

 
 

Listing 7.28 — Dynamic class loading in Singleton 
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public abstract class LoadableSingletonRegistry<T> extends StatefullSingletonRegistry<T> { // abstract to capture T 

  private final ClassLoader classLoader; 

  .. 

   

  protected LoadableSingletonRegistry(ClassLoader classLoader, SingletonRegistry<T> registry) { // aggregate registry 

    super(registry); 

    if ((this.classLoader = classLoader) == null) { 

      throw new NullPointerException("Class loader cannot be null");  

    } 

  } 

 

  @SuppressWarnings("unchecked") 

  public T getInstance(String className) throws ClassNotFoundException { 

    Class<?> clazz = this.classLoader.loadClass(className); // class literal representing the class just loaded 

    TypeLiteral<?> type = TypeLiteral.create((Type)clazz);  // type literal representing "clazz" 

 

    TypeLiteral<?> handledTypes = TypeLiteral.create(this.getClass()); // type literal representing T 

 

    handledTypes.asType(type); // if this succeeds without a class cast exception, the types conform 

    LogFactory.getLog(this).println("Loaded singleton class: ", className); 

    return this.getInstance((Class<T>)clazz); // now safe to cast, but must suppress warnings 

  } 

} 

 

The Proxy implementation also allows a specific class loader to create dynamic proxies for explicit control of 

proxy creation. Finally, creating classes reflectively will inherently use the class loader of the class used in the 

creation process.  

 

Conclusion –– Explicit usage of class loaders and/or weak references are advanced features useful in special 

situations only, which can easily make the pattern implementations more complex and lead to unexpected 
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results. Usage is closely related to patterns that require detailed knowledge about and/or control over pattern 

participant lifespan such as Singleton. Usage should be documented via JavaDoc, at least, so clients will know 

the pattern behaviour.  

7.1.3.5. Summary 

As reported in table 7.1 on page 82, the evaluation shows that of the special language mechanisms investigated, 

only synchronisation is commonly used. It is used in nine pattern implementations as well as in Meta classes. The 

other investigated mechanisms have their (specialised) uses, but in this evaluation, they are not shown to be 

widely applicable in conjunction with the ―Gang of Four‖ patterns. However, even though the use of dynamic 

class loading is only illustrated in the Singleton pattern, this is a mechanism widely used in real—life systems. 

Structural and in particular Creational patterns can benefit from its usage. Weak references should only be used 

with extreme care, especially in Behavioural patterns. The use of Java‘s cloning facility is discouraged because 

it relies on conventions rather than interfaces. Prototypical behaviour is better achieved through an explicit 

application of the Prototype pattern that relies on interfaces. Serialization is a useful mechanism for saving and 

recreating serializable objects, but it has different focus and scope compared to Memento. If working with in—

memory objects, Memento is preferable.  

7.1.4. Feature Observations 

This section gives an overview of how several unique C++ features applied in the ―Gang of Four‖ patterns are 

―translated‖ to (dynamic) Java 6 features used in the evaluation. The Java 6 alternatives are all dynamic in 

nature compared to the static features found in C++. This influences the pattern implementations because they 

yield more dynamic and parameterised program code, which according to Gamma et al. as explained in section 

2.1.2 on page 18 is harder to understand compared to static software [Gamma95, p.21]. Rephrasing the pattern 

descriptions for Java 6 could yield descriptions that are more verbose as well. On the other hand, several of the 

utilised static features in Java 6 have similar constructs in C++, but they are not employed by Gamma et al. 

Examples include inner classes, covariant return types, and varargs. Their usage is not discussed further.  

7.1.4.1. Static vs. Runtime Protection 

The canonical Iterator, Memento, and State implementations discuss or use C++ friends to achieve two levels of 

static protection that defines how pivotal pattern participants interrelate. Publicly, a narrow interface is 

exposed, while privileged pattern participants have access to a wide interface that grants access to private 

information. The interface (e.g. Memento participant) is one and the same, using different levels of access 

modifiers and friends. This is possible because friends in C++ has the same access rights to data and operations 

of a befriended class as the class itself [Stroustrup91, p.566-568]. Thus, at compile—time, the privileged class 

(e.g. Originator) has access to the full interface functionality. In Java, a class may declare and implement 

private operations, but there is no way to convey this information to clients without relying on conventions. 

There is no way to declare that an interface defines private operations, though an interface may be private. All 

operations declared in an interface are public by nature, but protected access can be achieved through abstract 

classes. Java does not support private implementation inheritance. However, abstract classes are in general not 

a viable alternative since Java only supports single inheritance.  
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The evaluation offers two ways to solve this: 

 

1. Define a single type describing the public (narrow) functionality and rely on conventions for the private 

functionality exposed in the wide interface in C++. Inner classes can act as ―friends‖ locally and 

through inheritance, but reflection must otherwise be used to access the information outside the 

package. The cost is compile—time type safety. 

2. Define a type describing the narrow (public) functionality and a type describing the private parts of the 

wide (private) interface. The information exposed by the latter interface has to be public but can be 

accessed in a compile—time safe manner. The cost is exposing otherwise private information publicly, 

but exception stack traces and class literals can be used to identify the caller and only grant access to 

approved ―friends‖.  

 

Regarding item 1), a (protected) inner class may define protected behaviour sub—classes can access but it relies 

on inheritance once again. This corresponds to the Iterator functionality described by Gamma et al. [Gamma95, 

p.262]. An example of this functionality is the meta.reflect.CallerClass.CallerIterator<C> inner 

class. Using reflection to access private information is error prone at runtime. It also violates information hiding. 

Regarding compile—time type safety, it is not a good solution for API‘s or frameworks, but will work fine in 

proprietary applications because the use of reflection is more controlled. However, proprietary applications may 

not be concerned with the same stringent requirements to protect information and may be satisfied by using 

public types as described in item 2). The split between a public type and accessing the private parts via 

reflection is not used in the evaluation, though reflection is used in several pattern implementations to access 

potentially private operations as an alternative to using a single interface and/or private inheritance. 

 

The strategy explained in item 2) is the alternative used in the evaluation to implement Memento and State, but 

seems applicable in any similar scenario. The Memento implementation enforces access rules at runtime that 

can be performed statically in C++. It is not correct simply to supply the caller as an object to the methods in 

the wide interface, because such an object can be forged; there is no way to guarantee that it represents the 

actual caller. It also clutter the signatures of the methods defined in the interface. Instead, the access rules are 

enforced using the CallerClass type. Providing the JVM supplies a trustworthy stack trace, the caller cannot 

be faked. It also ensures that the implementation of the methods in the wide interface do not use reflection 

directly, but access the CallerClass type, which is used as any other object. The State implementation does 

not enforce caller checks, but could easily have done so. When the wide interface is implemented by a private 

(inner) class, there is no need to enforce caller checks. 

7.1.4.2. Multiple Inheritance vs. Interfaces and Composition 

In all fairness, Gamma et al. do not utilise multiple inheritance much. The pattern implementations in this 

evaluation utilise multiple interface implementation to a much larger degree than the ―Gang of Four‖ 

implementations. This is because the scope of the evaluations here are more realistic, but also because 

inheritance is not utilised as much in Java. Private (functional) inheritance is a variant of the scenario described 

in the previous section. It may be used alone without the use of other (public) inherited classes, e.g. single 
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inheritance, but is often used with other inherited types. The canonical Adapter implementation uses both 

public and private inheritance. In Java, the private inherited type must be used through composition. In case it 

is necessary to use a public interface to represent the functionality (as a type), access rules can be enforced in a 

similar manner as described in the previous section.  

 

Public multiple inheritance, as used in the canonical Observer implementation, must be implemented using 

interfaces with direct implementation or using composition. This is required or the type information is lost. C++ 

allows the implementation to be inherited as well. Composition indicates more dynamic program structure, but 

this is not the case here. The interfaces representing the classes otherwise inherited in C++ are fixed at 

compile—time. In all likelihood the corresponding implementations and/or components will be fixed as well 

(declared final). The evaluation shows that this is the case here.  

7.1.4.3. Templates vs. Generics 

All template functionality used in the canonical C++ implementations can be replaced by generics using upper 

bounds. The requirement for upper bounds is to ensure that all realised type parameters conform to a given 

interface that determines the functionality, which could otherwise be specified solely through matching types in 

C++. This enforces type safety. Operators cannot be invoked directly on the type parameter, so more work may 

be required. Furthermore, because class literals cannot express generic types, type literals may be used to 

augment the compile—time type safety.  

7.1.4.4. Templates vs. Annotations 

The use of C++ templates in the canonical examples to ensure matching signatures of function pointers can be 

replaced by annotations without the need for generic bounds. The gain is increased flexibility at the expense of 

compile—time safety. The matching signatures can be identified by annotations. The evaluation shows that 

implementing components to find and execute such signatures is straight—forward.  

7.1.4.5. Overloaded Operators vs. Dynamic Proxies 

Overloaded operators are not supported in Java 6. The only solution is to use normal methods, which cannot 

express semantics like the C++ -> operator utilised in the canonical Proxy implementation, or to use (dynamic) 

proxies. The latter requires extensive factory usage to hide the complexity in the proxy creation process. 

7.2. Pattern Relationships 
Table 3.4 on page 45 introduced the ―Gang of Four‖ pattern system and explained the relationships between 

different patterns as described by Gamma et al. Below, table 7.2 compares the described relationships with the 

actual relationships expressed in this evaluation. The expressed relationships are subjective: a different 

evaluation will probably produce different relationships. Crossed out relationships are not expressed, while 

(parenthesised relationships) are expressed indirectly or could be expressed with minor changes, such as for 

example writing anonymous adapter classes. Relationships prefixed with a plus (+) are not described directly by 

Gamma et al., but expressed in this evaluation. Some patterns are expressed more than once, such as Factory 

Method. The relationship may also be expressed via API or Meta classes and not only in the different pattern 
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implementations. These issues are not described in detail as the focus is on expressed pattern relationships.  

 
 

Table 7.2 — Pattern relationships in the ―Gang of Four‖ pattern implementations 
 

Name 
 

Expressed Relationships 
 

Remarks 
 

Creational Patterns 

Abstract 
Factory 

 creates Bridge 

 alternative to Builder 

 collaborates with or alternative 
to Facade 

 uses Factory Method  

 uses or alternative to Prototype 

 is a Singleton 

Implementation creates 

bridge.SequenceAbstraction<E> and 

bridge.SequenceValueGenerator<E> objects, but 
prototypical and reflective factories can create various 
product types. 

Builder  alternative to Abstract Factory 

 creates Bridge 

 creates Composite 

 is a Singleton 

Not an alternative to Abstract Factory as different 
products are created. Created 

interpreter.Expression<E> objects can be 
composite. 

Factory Method  used by Abstract Factory 

 used by Iterator 

 alternative to Prototype 

 used by Template Method 

Creates command.Command<E> objects, which are 
prototypes. Iterator types used are not polymorphic, but 
meta.reflect.CallerClass.CallerIterator<C> 
returns polymorphic types using Factory Method. 

Prototype  used by or alternative to 
Abstract Factory 

 implemented by Command 

 collaborates with Decorator 

 alternative to Factory Method 

 is a Singleton 

 collaborates with Template 
Method 

Both command.Command<E> and 

decorator.SequenceDecorator<E> objects act as 
prototypes. Alternative to Factory Method as the 
implementation creates commands.  
 
All Singleton types disallow copy. Prototypes are not 
created from Template Method(s). 

Singleton  implemented by Abstract 
Factory 

 implemented by Builder 

 implemented by Facade 

 implemented by Mediator 

 (implemented by Prototype) 

 implemented by Observer 

 (implemented by State) 

 + uses Adapter 

The State implementation uses enumeration constants 
to implement different states that are singletons per 
design.  
 

The prototype.PrototypeFactory class is not a 
Singleton, but uses a local singleton instance of the 

meta.reflect.proxy.ProxyFactory class. 
 

The singleton.DanishAlphabetSequence class 
uses adaptation to create an anonymous delegate 
sequence. 

 

Structural Patterns 

Adapter  (alternative to Bridge) 

 alternative to Decorator 

 (alternative to Proxy) 

 + is a Strategy 

 + used by Singleton 

An adapter.SequenceAdapter<E,E> is an 

alternative to decorator.SequenceDecorator<E>. 
The adapter delegates defined in 

adapter.AdapterStrategy class are applications of 
the Strategy pattern. 

Bridge  created by Abstract Factory 

 alternative to Adapter 

 created by Builder 

The Bridge implementation cannot use a 

meta.model.Sequence<E> type as the 
implementation. 

Composite  created by Builder 

 collaborates with Chain of 
Responsibility 

The Builder implementation can create and the 
Interpreter implementation can evaluate composite 

interpreter.Expression<E> objects.  
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Table 7.2 — Pattern relationships in the ―Gang of Four‖ pattern implementations 
 

Name 
 

Expressed Relationships 
 

Remarks 

 collaborates with Decorator 

 collaborates with Flyweight 

 used by Interpreter 

 uses or collaborates with 
Iterator 

 collaborates with Visitor 

 + uses Strategy 

The Chain of Responsibility, Flyweight, and Visitor 
implementations all operate on (different) composite 

elements. The decorator.SequenceDecorator<E> 

class decorates composite.CompositeSequence<E> 
instances. 
 
A specific traversal strategy can be used to traverse the 
composite structure, for example breath—first. 

Decorator  alternative to Adapter 

 collaborates with Prototype 

 collaborates with Composite 

 alternative to Strategy 

Decorator is used by Adapter, Prototype, and 
Composite. 

Facade  collaborates or alternative to 
Abstract Factory 

 alternative to Mediator 

 is a Singleton 

Implemented as a Singleton. 

Flyweight  collaborates with Composite 

 used by Interpreter 

 implemented or used by State 

 implemented by Strategy 

 + uses Factory Method 

 + creates Proxy 

flyweight.Sentence, flyweight.Word, and 

flyweight.Character objects form a composite—like 
structure. Factory Method is used to create flyweight 
objects. Returned collections of flyweights are guarded 
by protection proxies in form of unmodifiable 
collections. 

Proxy  alternative to Adapter 

 alternative to Decorator 

 + is a Decorator 

Dynamic proxies can simulate any adapter or decorator. 
 
Decorators are inherited to supply default behaviour. 

 

Behavioural Patterns 

Chain of 
Responsibility 

 collaborates with Composite The chainofresponsibility.HandlerChain<R> 
type maintains handlers in a composite structure. 

Command  is a Composite 

 uses Memento 

 is a Prototype 

 + is a Template Method 

The command.CompositeCommand<E> class represents 
a composite (macro) command. The undo mechanism for 

command.SequenceCommand<E> sub—classes uses 
mementos, if possible, and is implemented as a 
Template Method. Any command acts as a prototype. 

Interpreter  uses Composite 

 uses Flyweight 

 uses Iterator 

 uses Visitor 

 + uses Prototype 

The interpreter.FlowExpression<E> class is 
composite, and can be traversed using iterators. No 
specific visitor interface is defined and the 

interpreter.Interpreter<T> class traverses the 
syntax—tree based on the normal 

interpreter.Expression<E> interface. Expressions 
are prototypical. 

Iterator  used by or collaborates with 
Composite 

 uses Factory Method 

 used by Interpreter 

 uses or alternative to Memento 

 + uses Decorator 

 + uses Strategy 

The internal iterator class 

iterator.ProcessableSequence<E> uses 
composition instead of inheritance.  
 
Any sequence can become iterable using a given strategy 
to process the sequence values.  

Mediator  alternative to Facade  

 collaborates with Observer 

Not implemented (but evaluated).  
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Table 7.2 — Pattern relationships in the ―Gang of Four‖ pattern implementations 
 

Name 
 

Expressed Relationships 
 

Remarks 

 is a Singleton 

Memento  used by Command 

 used by or alternative to 
Iterator 

 + uses Prototype 

The memento.SequenceMemento<E> class uses 

meta.model.Sequence<E> prototypical behaviour to 
save the sequence state. 

Observer  collaborates with Mediator 

 is a Singleton 

 + is a Composite 

 + is a Template Method 

 + uses Decorator 

 + creates Proxy 

 + uses Adapter 

Observers can form a composite structure.  
 

To ensure meta.model.Sequence<E> objects supplied 
as arguments in notification methods cannot be 
modified, adaptation (of type parameters) followed by 
proxying is employed (immutable).  
 
Decorator can make any sequence observable. 

State  is a or uses Flyweight 

 is a Singleton 

 + uses Abstract Factory 

The State implementation uses enumeration constants 
to implement different states that are singletons and 
only operate on extrinsic data. Abstract Factory is used 
to create target objects (dynamic proxies). 

Strategy  alternative to Decorator 

 is a Flyweight 

 alternative to Template Method 

Strategy implementations have no internal state and are 
unique. 

Template 
Method 

 uses Factory Method 

 collaborates with Prototype 

 alternative to Strategy 

 + implemented by Decorator 

 + creates Proxy 

The templatemethod.SequenceTemplate<K,E> 
uses Factory Method to generate keys for sequence 
values. 
 
Creates protection proxies to control access to 
constructed sequence values. 

Visitor  collaborates with Composite 

 used by Interpreter 

 + uses Strategy 

The visitor.VisitableCompositeSequence class 
is a composite sequence supporting visitors. A specific 
traversal strategy can be used to traverse the visitable 
structure, for example depth—first. 

 

As table 7.2 illustrates, there is a fair overlap between the expressed relationships and the relationships 

identified by Gamma et al. The question is thus what caused the changes: the design and/or the language? As 

the remarks explain, the primary difference is a matter of design. This is truly an indication of versatility of the 

―Gang of Four‖ design patterns. There are only two relationships that we can attribute almost solely to Java 6 

features, namely the compositions Singleton using Adapter and State using Abstract Factory (underlined above).  

 

Adaptation is used in the singleton.DanishAlphabetSequence singleton type, which is implemented using 

the Singleton—as—Single—Constant idiom defined in this thesis. As Java does not support multiple inheritance, 

DanishAlphabetSequence cannot inherit meta.model.ArraySequence<E>, which supplies all the needed 

functionality, because it already extends java.lang.Enum<DanishAlphabetSequence>. To avoid duplicate 

code, we use composition and delegate the actual sequence functionality of DanishAlphabetSequence to an 

anonymous sub—class of ArraySequence<java.lang.String> stored as an aggregate member. The 

anonymous sub—class is an adaptation to the meta.model.Sequence<java.lang.String> type.  
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The State implementation uses Abstract Factory to create state.StepSequence instances. This is because 

there is no single class defining the functionality described by StepSequence. Instead, the factory returns a 

dynamic proxy representing the functionality. The dynamic proxy imitates dynamic inheritance [Gamma95, 

p.309] by changing the target object of the methods being invoked reflectively via the proxy. This effectively 

changes the implementation of the methods being invoked and thus of the StepSequence proxy instance.  

 

There is a rather high coherency between the different pattern implementations. This is because they basically 

operate on the same model classes, primarily meta.model.Sequence<E> and derived types such as 

prototype.StrictCopyable<T>, interpreter.Expression<E>, and command.Command<E> that one 

way or the other end up manipulating sequences. On the other hand, several implementations are fixed because 

of this, and cannot easily, if at all, be componentized. For example, the Bridge implementation must use an 

explicit type of bridge.SequenceValueGenerator<E> and cannot easily act as an alternative to a general 

adapter. Componentization has not been a primary goal of the implementations, but a welcome addition (as for 

example the Chain of Responsibility, Factory Method, Observer, and Singleton Registry implementations as listed 

in the next section).  

 

Alternative relationships between applied patterns are primarily expressed in form of application of the 

Strategy, Decorator, Adapter, and Proxy patterns, which all are somewhat similar in purpose and highly 

dynamic. This is expected and understandable. Using Prototype for the Memento pattern and Composite for the 

Observer pattern is nothing novel either, but it illustrates the versatility in the pattern application. 

7.3. Implementation Level 
The classification of implementation level as defined by Norvig is applied to the pattern implementations and 

listed below in table 7.3 (see table 4.1 on page 55). 

 
 

Table 7.3 — Implementation level of the ―Gang of Four‖ patterns in Java 6 
 

Name 
 

Level 

 

Type 
 

Description 
 

Creational Patterns 

Abstract Factory Formal Evaluation component, 
Language support 

Reflection, using prototypes and/or, 

factorymethod.Factory<T>. 

Builder Informal Problem specific, 
Language support 

Could use reflection and/or 

meta.reflect.InstantiableTypeLiteral<T>. 

Factory Method Formal Evaluation component, 
Language support 

Reflection, using InstantiableTypeLiteral<T>, 

and/or Factory<T>. 

Prototype Formal API, Language support java.lang.Cloneable with specific language 
support. 

Singleton Invisible Evaluation component, 
Language support 

Singleton registries reusable. Enumerations support 
creational semantics.  

 

Structural Patterns 

Adapter Invisible Problem specific, Anonymous inner classes (closures), dynamic proxies. 
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Table 7.3 — Implementation level of the ―Gang of Four‖ patterns in Java 6 
 

Name 
 

Level 

 

Type 
 

Description 

Language support 

Bridge Informal Problem specific  

Composite Informal Possible component instanceof operator can help differentiate between 
Composites and Leafs. 

Decorator Informal Problem specific  

Facade Informal Problem specific, 
Language support 

Packages and access modifiers. 

Flyweight Informal Problem specific, 
Language support 

Synchronisation to ensure proper creation of flyweights. 

Proxy Formal Evaluation component, 
API, Language support 

java.lang.reflect.Proxy with specific language 

support, and meta.reflect.proxy package. 
 

Behavioural Patterns 

Chain of 
Responsibility 

Formal Evaluation component HandlerChain<R>, Handler<R>, and 

HandlerLink<R> in the chainofresponsibility 
package (including implementations). 

Command Informal Possible component Candidates are command.Command<E> and 

command.CommandProcessor. 

Interpreter Informal Problem specific, 
Possible component 

Candidates are Expression<E> (sub—)types, 

Context, and Interpreter<T> in the interpreter 
package. 

Iterator Invisible API, Language support Java for—each loop, java.util.Iterator<E> and 

java.lang.Iterable<T> with standard 
implementations. 

Mediator Informal Problem specific  

Memento Informal  Problem specific java.io.Serializable targets different problem. 

Observer Formal API, Evaluation 
component 

java.util.Observer and java.util.Observable, 

rarely used. observer.ObserverManager and 

meta.reflect.@Executor are reusable. 

State Informal Problem specific, 
Language support 

Can be implemented using enumerations. Dynamic 
proxies can alter behaviour at runtime. 

Strategy Invisible Problem specific, 
Language support 

Anonymous inner classes (closures). 

Template Method Informal Problem specific, 
Language support 

Abstract classes, abstract methods, varargs, and 
covariant return types. 

Visitor Informal Problem specific Only single—dispatch, but can use reflection. 
 

Meta Classes 
 

Formal 
 

Evaluation 
Components 

 

meta.reflect, meta.reflect.proxy, and most of 

meta.util packages reusable. 

 

We consider Adapter, Iterator, Singleton, and Strategy to be Invisible. The use of inner classes to adapt to a 

given interface is so routinely used it merits the Invisible classification. The same is true for Strategy. Iterator 

even more so, because of the built—in for—each loop as of Java 5. Singleton is considered Invisible if 

implemented using enumerations, because the implementation will not differ from normal enumeration usage. 
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No special tricks are required; the only difference between normal enumerations and singletons is that only a 

single constant is present in the singleton type.  

 

Abstract Factory, Chain of Responsibility, Factory Method, Observer, Prototype, and Proxy are considered 

Formal. In the implementations, all but Prototype offer reusable components, either directly or in form of Meta 

classes found in meta.reflect, meta.reflect.proxy, or meta.util. In fact, we claim the key classes 

from the pattern implementations can be used ―as is‖, or at least with few adjustments or adaptation. 

Prototype is classified as Formal because of Java‘s built—in cloning mechanism, though the evaluation advise 

against using it. It is the usage of reflection that makes the Creational patterns componentizable, while it is the 

easily recognisable container—like structure that aids the Behavioural patterns identified as Formal. Proxy 

exploits the built—in support for dynamic proxies. We consider componentized patterns a good source for 

possible Java 6 idioms. The patterns classified as Invisible above could also be classified as ―universally known‖ 

Java 6 idioms, but applying a pattern or idiom in our view indicates more work than using Invisible features.  

 

The rest of the patterns are deemed Informal, though it is a judgement call. Memento, for example, can exploit 

serialization in a manner similar to the cloning mechanism, which is classified as Formal. The reason is that we 

believe serialization does not adequately describe the Memento abstraction in that it creates new objects 

instead of updating existing ones. Command, Composite, and Interpreter are borderline, but still not classified 

as Formal; we estimate that reusable components could be made fairly easy. The Command Processor variant is 

especially interesting because of its very flexible use of commands. Even though many Informal patterns are 

considered problem specific, and thus requires careful application, reflection could aid in creating reusable 

components based on conventions. Builder, for example, is not classified as Formal since the evaluation did not 

provide at least a partial reusable component. Visitor uses reflection to provide reuse based on convention, but 

it is still too specific to be promoted to Formal.  

7.4. Summary 
Below, we list and summarise the key issues from the comparative evaluation of the ―Gang of Four‖ patterns:  

 

 The evaluation shows that Java’s mixture of static and dynamic features is well suited for the 

abstractions described by the “Gang of Four” patterns. The static features aid the robustness, 

pattern intent, and reusability of the patterns, while the dynamic features allow for much greater 

flexibility. 

 The evaluation revealed possible approaches on how to implement pattern functionality described 

with intrinsic C++ features in Java 6. The approaches are closely related to identified high—lights. 

 The evaluation illustrates that the “Gang of Four” patterns are truly versatile because they can 

cooperate in numerous different ways, many of which are not even described by Gamma et al.  

 We consider four “Gang of Four” patterns to have an implementation level of Invisible, while an 

additional six are considered Formal with associated reusable components. 
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The evaluation of core language features includes (abstract) classes, interfaces, inheritance, nested and 

anonymous classes, generic types and methods, enumerations, exception handling, covariant return types, and 

varargs. The features are mostly static by nature, and form the foundation for any Java 6 program. All 

features are widely used in the pattern implementations, but especially so for interfaces, inheritance, and 

generic types and methods. Aided by core language features, the implementations express the ―program to an 

interface, not an implementation‖ and ―favour object composition over class inheritance‖ themes described 

by Gamma et al. Inheritance does not exclude composition and the two are often used hand—in—hand, combined 

with interface usage. The core language features promote robustness, pattern intent, and reusability.  

 

The evaluation of reflective features includes class literals, type literals, constructors, methods, dynamic 

proxies, and annotations. The features are mostly dynamic by nature and Creational and Behavioural patterns 

benefit most from their usage. Within the realm of this evaluation, Java 6 can express all reflective pattern 

behaviour described by Gamma et al. Java‘s reflective capabilities offer several new, flexible, and generally 

interesting approaches on how to implement pattern functionality, especially when combined with core 

language features. Annotations are especially interesting. The evaluation of special language mechanisms 

includes synchronisation, serialization, cloning, class loader, and weak references. While the features offer 

interesting possibilities, only synchronisation is commonly used in the evaluation.  

 

By utilising the evaluation features, several pattern and implementation high—lights have been identified. 

Abstract Factory and Factory Method utilise type literals for generic factories capable of creating even generic 

types in a type—safe manner. Memento uses class literals and stack trace information to identify callers to 

simulate C++ friends while still providing compile—time type safety. Observer uses annotations to identify 

observers and notification methods without coercing a common observer type. Proxy and State use dynamic 

proxies to mimic duck typing and dynamic inheritance. Singleton uses class literals and stack trace 

information to allow sub—class specialisation, while the Singleton—as—Single—Constant idiom defined in this 

thesis justifies that Java 6 has built—in support for the Singleton pattern. These high—lights are described in 

detail in section 9.3. 

 

The implementations express many of the pattern relationships identified by Gamma et al. Several 

relationships are not expressed, while numerous others not described by Gamma et al. have materialised. The 

primary cause of difference is related to the design, not to the language. This is a strong indication of how 

versatile the “Gang of Four” patterns are and the quality and familiarity they contribute to any design 

where applied properly. Only two relationships can be ascribed solely to the use of Java 6, namely the 

Singleton using Adapter and State using Abstract Factory compositions. Singleton using Adapter is caused by 

usage of the Singleton—as—Single—Constant idiom, while State using Abstract Factory is because dynamic 

proxies are used to simulate dynamic inheritance. On the other hand, Java 6 makes it easy to express many 

relationships using its powerful static and runtime features. 

 

Based on the evaluation, we consider Adapter, Iterator, Singleton, and Strategy to have an implementation 

level corresponding to Invisible. The use of inner classes to adapt to a given interface is so routinely used it 
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merits the Invisible classification, which is also true for Strategy. Iterator even more so because of direct 

language support. Singleton is considered Invisible if implemented using the Singleton—as—Single—Constant 

idiom. We consider Abstract Factory, Chain of Responsibility, Factory Method, Observer, Prototype, and 

Proxy to have an implementation level corresponding to Formal. All but Prototype offer reusable components, 

either directly or in form of Meta classes, but the Prototype interface functionality can still be reused. The rest 

of the patterns are considered Informal, but the Meta classes also aid greatly in their implementations. 
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8. Detailed Evaluation 
 

A language that does not affect the way  

you think about programming, is not worth knowing.  

–– Alan J. Perlis 
 

This chapter presents the individual ―Gang of Four‖ pattern implementations and corresponding evaluations. The 

patterns are presented in the order defined by Gamma et al. To keep this thesis as short as possible, the 

detailed pattern evaluations are kept to a minimum using the evaluation format defined in the evaluation 

approach. Each pattern has a dedicated section that presents its Intent, Structure, Participants, and 

Implementation, using familiar ―Gang of Four‖ pattern element names. We present the pattern structure as a 

detailed UML class diagram that includes information about relevant attributes and operations. The UML 

diagrams also identifies the pattern participants, which are described thereafter, linked to the developed Java 

classes. An Implementation section addresses all functionality described by Gamma et al. in the Implementation 

and Sample Code elements for a given pattern, and illustrates whether or not the functionality can be 

implemented in Java 6. The paragraph headings in the Implementation sections are taken from the 

corresponding topics discussed by Gamma et al. in the pattern descriptions. A brief summary concludes this 

chapter. 

8.1. Creational Patterns 

8.1.1. Abstract Factory 

Abstract Factory is a Creational pattern with Object scope. The implementation is located in the 

dk.rode.thesis.abstractfactory package. 

8.1.1.1. Intent 

Provide an interface for creating families of related or dependent objects without specifying their concrete 

classes [Gamma95, p.87].  

8.1.1.2. Structure 

Figure 8.1 illustrates the Abstract Factory implementation as an UML Class diagram, where the pattern 

participants can also be identified. The pattern participants are described in the next section.  

8.1.1.3. Participants 

Table 8.1 describes the Abstract Factory participants in the words of Gamma et al. [Gamma95, p.89] and lists 

the corresponding implementations developed in the evaluation. 

8.1.1.4. Implementation 

Factories as singletons –– Design choice. Creating the products –– Factory Method is used in all 

implementations of SequenceFactory<E,P>. Prototype usage is illustrated in PrototypicalFactory<T>. A 
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prototypical registry capable of creating any number of prototypical products is implemented as 

PrototypicalRegistry. Type literals are preferred over class literals to create products because they 

support generic types, for example using factorymethod.Factory<T>. Defining extensible factories –– 

Parameterised product creation is illustrated in factorymethod.CommandCreator<E,T> and 

GeneratorFactory<E,P>. The first illustrates use of arguments to determine the product type, while the 

latter use arguments required by the product type. The PrototypicalRegistry class shows how to create 

unrelated product types in a type safe manner that does not require an unsafe down—cast as in C++. 

 
 

Figure 8.1 — Abstract Factory UML Class diagram 

 

 
 

Table 8.1 — Abstract Factory participants 
 

Participant 
 

Description 

 

Implementation 

AbstractFactory  Declares an interface for 
operations that create abstract 
product objects. 

AbstractionFactory<E>, GeneratorFactory<E,P>, 

SequenceFactory<E,P>, PrototypicalFactory<T>, 
factorymethod.Factory<T> 

ConcreteFactory  Implements the operations to 
create concrete product types. 

PrototypicalRegistry, StandardFactory<E,P>, 

StandardAbstractionFactory<E>,  
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Table 8.1 — Abstract Factory participants 
 

Participant 
 

Description 

 

Implementation 

SynchronisedAbstractionFactory<E>, 

MemorizableAbstractionFactory<E>, 

PrototypicalAbstractionFactory<E>, 

CollectionValueFactory<E>, RangeValueFactory, 

PrototypicalSequenceFactory<E>, sub—classes of Factory<T> 

and PrototypicalFactory<T> 

AbstractProduct  Declares an interface for a type of 
product object. 

bridge.SequenceAbstraction<E>, 

bridge.SequenceValueGenerator<E>, 
meta.model.Sequence<E> 

ConcreteProduct  Defines a product object to be 
created by the corresponding 
concrete factory, and implements 
the AbstractProduct interface. 

facade.FibonacciSequence, and all 

bridge.SequenceAbstraction<E> and 

bridge.SequenceValueGenerator<E> implementations 

 

Client  Uses only interfaces declared by 
AbstractFactory and 
AbstractProduct types. 

Main 

8.1.2. Builder 

Builder is a Creational pattern with Object scope. The dk.rode.thesis.builder package contains the 

implementation. 

8.1.2.1. Intent 

Separate the construction of a complex object from its representation so that the same construction process can 

create different representations [Gamma95, p.97].  

8.1.2.2. Structure 

Figure 8.2 illustrates the Builder implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

8.1.2.3. Participants 

Table 8.2 describes the Builder participants in the words of Gamma et al. [Gamma95, p.98-99] and lists the 

corresponding implementations developed in the evaluation. 

8.1.2.4. Implementation 

Assembly and construction interface –– Design choice. The ExpressionBuilder<E> type builds products 

in a tree—like structure. Various build methods accept already constructed expressions, while some constructed 

expressions can be manipulated directly, e.g. interpreter.FlowExpression<E>. Why no abstract class 

for products? –– Design choice. The Builder implementation use covariant return types to express specific 

types when required. Empty methods as default in builder –– Design choice. In our view, however, empty 

methods constitute a poor design choice that will inevitable lead to problems in form of runtime errors, e.g. null 

pointers. Empty methods are must better suited for Template Method with primitive operations that do not 

return a value the context depends on.  
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Figure 8.2 — Builder UML Class diagram 

 

 
 

Table 8.2 — Builder participants 
 

Participant 
 

Description 

 

Implementation 

Builder  Specifies an abstract interface for creating parts 
of a Product object. 

ExpressionBuilder<E>, 
ComparableExpressionBuilder<E> 

ConcreteBuilder  Constructs and assembles parts of the product by 
implementing the Builder interface. 

 Defines and keeps track of the representation it 
creates. 

 Provides an interface for retrieving the product. 

StandardExpressionBuilder<E>, 

StandardComparableExpressionBuilder<E>, 

CountingExpressionBuilder<E>, 

CountingComparableExpressionBuilder<E>, 

TypedExpressionBuilder<E>, 
TypedComparableExpressionBuilder<E> 

Director  Constructs an object using the Builder interface.  Main 

Product  Represents the complex object under 
construction. ConcreteBuilder builds the 
product‘s internal representation and defines the 
process by which it is assembled. 

 Includes classes that define the constituent parts, 
including interfaces for assembling the parts into 
the final result. 

All interpreter.Expression<E> 
implementations, including 

interpreter.TypedExpression<E> types 



EVALUATING SOFTWARE DESIGN PATTERNS –– EVALUATION MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 140 of 197 

8.1.3. Factory Method 

Factory Method is a Creational pattern with Class scope. The dk.rode.thesis.factorymethod package 

contains the implementation. 

8.1.3.1. Intent 

Separate the construction of a complex object from its representation so that the same construction process can 

create different representations [Gamma95, p.97].  

8.1.3.2. Structure 

Figure 8.3 illustrates the Factory Method implementation as an UML Class diagram, where the pattern 

participants can also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.3 — Factory Method UML Class diagram 

 

8.1.3.3. Participants 

Table 8.3 describes the Factory Method participants in the words of Gamma et al. [Gamma95, p.108-109] and 

lists the corresponding implementations developed in the evaluation. 

 
 

Table 8.3 — Factory Method participants 
 

Participant 
 

Description 

 

Implementation 

Product  Defines the interface of objects the factory 
method creates. 

command.Command<E> 

ConcreteProduct  Implements the Product interface. All command.Command<E> implementations 
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Table 8.3 — Factory Method participants 
 

Participant 
 

Description 

 

Implementation 

Creator  Declares the factory method, which returns an 
object of type Product. Creator may also define a 
default implementation of the factory method 
that returns a default ConcreteProduct object. 

 May call the factory method to create a Product 
object.  

CommandCreator<E,T>, Factory<T>, 
TypedFactory<T,P> 

ConcreteCreator  Overrides the factory method to return an 
instance of a ConcreteProduct. 

SequenceCommandCreator<E>, 

ReversibleSequenceCommandCreator<E>, 

ReflectiveCommandCreator<E>, 

EvilSequenceCommandCreator<E>, sub—

classes of Factory<T> or TypedFactory<T,P> 

8.1.3.4. Implementation 

Two major varieties –– The CommandCreator<E,T> class provide a default implementation, but requires 

sub—classes to implement the abstract factory method. This is design choice; sub—classes could simply return 

null from the implemented factory method and the default would always be used. Parameterised factory 

methods –– CommandCreator<E,T> illustrates parameterised factory methods, including call to super 

(default) implementations. T is the token used to determine the product type (command) to create. Language 

specific variants and issues –– Type literals are preferred over class literals to create products because they 

support generic types, for example using Factory<T>. The abstractfactory.PrototypicalRegistry 

class stores prototypes based on their classes. In Template Method, 

templatemethod.SequenceTemplate<K,E> illustrates that, unlike C++, it is possible to invoke sub—class 

hooks from the constructor. Lazy initialisation is used in Facade, which only creates sequences used for 

calculation on demand in a thread—safe manner. Using templates to avoid sub—classing –– The 

Factory<T> class can create any type in a type—safe fashion, including generic types, providing T supplies an 

applicable constructor. The abstractfactory.PrototypicalRegistry uses upper bounded type 

parameters to ensure that all type parameters are copyable since the new operator cannot be invoked on type 

parameters because of erasure. Naming conventions –– Design choice, but important if overloaded factory 

methods are used. Java cannot overload on generic types, only raw types. The Visitor implementation shows 

how naming can allow visitation based on type parameters. 

8.1.4. Prototype 

Prototype is a Creational pattern with Object scope. The dk.rode.thesis.prototype package contains the 

implementation. 

8.1.4.1. Intent 

Specify the kinds of objects to create using a prototypical instance, and create new objects by copying this 

prototype [Gamma95, p.117]. 

8.1.4.2. Structure 

Figure 8.4 illustrates the Prototype implementation as an UML Class diagram, where the pattern participants can 
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also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.4 — Prototype UML Class diagram 

 

8.1.4.3. Participants 

Table 8.4 describes the Prototype participants in the words of Gamma et al. [Gamma95, p.119] and lists the 

corresponding implementations developed in the evaluation. 

 
 

Table 8.4 — Prototype participants 
 

Participant 
 

Description 

 

Implementation 

Prototype  Declares an interface for cloning itself. Copyable<T>, StrictCopyable<T> 

ConcretePrototype  Implements the operation for cloning 
itself. 

SymbolSequence and CountdownSequence, but also all 

other meta.model.Sequence<E> implementations 

Client  Creates a new object by asking a 
prototype to clone itself. 

Main 

8.1.4.4. Implementation 

Using a prototype manager –– The abstractfactory.PrototypicalRegistry class is a prototype 

manager. It also covers the Smalltalk example supplied in the Sample Code element [Gamma95, p.125]. 

Implementing the clone operation –– The SymbolSequence class uses Java‘s built—in clone facility as well 

as the prototypical functionality offered by StrictCopyable.copy(). The copy() method used in 

interpreter.Expression<E> objects may encounter unmanageable cyclic references in expression trees. 

However, the Expression.asSymbol(Context) method illustrates that Java easily can handle cyclic 

references in graph traversals, so it is simply a matter of implementation. All Copyable<T> objects supply copy 

constructors by convention to perform deep—copy. Initialising clones –– The Copyable.copy() method is 

parameter—less, but could employ arguments in a manner similar to factorymethod.Factory<T>. It is a 

design choice we do not recommend because it shifts focus more towards factories, but at flag to indicate deep 
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copying may be appropriate. A copy of an uninitialised interpreter.FlowExpression<E> instance will have 

to be initialised before use. 

8.1.5. Singleton 

Singleton is a Creational pattern with Object scope. The dk.rode.thesis.singleton package contains the 

implementation. 

8.1.5.1. Intent 

Ensure a class only has one instance, and provide a global point of access to it [Gamma95, p.127]. 

8.1.5.2. Structure 

Figure 8.5 illustrates the Singleton implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section. 

 
 

Figure 8.5 — Singleton UML Class diagram 

 

8.1.5.3. Participants 

Table 8.5 describes the Singleton participants in the words of Gamma et al. [Gamma95, p.119] and lists the 
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corresponding implementations developed in the evaluation. 

 
 

Table 8.5 — Singleton participants 
 

Participant 
 

Description 

 

Implementation 

Singleton  Defines an instance operation that lets clients access 
its unique instance. instance is a class operation. 

 May be responsible for creating its own unique 
instance.  

DanishAlphabetSequence, 

NorwegianAlphabetSequence, 

SimpsonsFamilySequence, 

SimpsonsAndBouvierFamilySequence, 

MutatedSimpsonsFamilySequence, 
SmileySequence 

 

Though not described as a participant, Gamma et al. thoroughly describe and illustrate the use of singleton 

registries [Gamma95, p.130-132] in the Implementation element. Hence, singleton registries are also 

implemented in the evaluation. The name and minimal description of the ―pseudo—participants‖ as listed in 

table 8.6 below are not defined by Gamma et al.  

 
 

Table 8.6 — Additional Singleton entities 
 

Name 
 

Description 

 

Implementation 

SingletonRegistry  Defines an operation to return Singleton 
instances. 

 May defer creation of a Singleton instance to 
the singleton type itself.  

SingletonRegistry<T> 

 

@Singleton 

ConcreteSingletonRegistry  Implements the SingletonRegistry interface. 

 May be a Singleton.  

StatelessSingletonRegistry<T>, 

StatefullSingletonRegistry<T>, 
LoadableSingletonRegistry<T> 

 

Notice, that we do not demand that a registry must store the different singleton types.  

8.1.5.4. Implementation 

Ensuring a unique instance –– The DanishAlphabetSequence is implemented as a single enumeration 

constant. The SimpsonsFamilySequence uses a static method to lazily create the singleton instance in a 

thread—safe manner that does not require synchronisation. Both rely on automatic initialisation, but only when 

requested. Of the three problematic issues related to this in C++ [Gamma95, p.129-130], only parameterised 

singleton methods cannot be done in this fashion. They must be implemented as static synchronised methods. 

Though a parameterised singleton method is a design choice, we do not recommend it as it obfuscates the 

Singleton purpose. What happens if the singleton method is invoked again with a different value, for example. 

Overriding new as in Smalltalk is not possible in Java. Sub—classing the Singleton class –– The 

meta.log.LogFactory class uses a system property to determine the type of log to use. Using conditional 

statements to decide the class is trivial. Java has no separation between header and object files, so compile—

time linking to a different implementation is changing the entire class. The SimpsonsFamilySequence allows 

for sub—classing of the actual Singleton type, which to our knowledge is a novel approach. It does so by 

identifying the caller to simulate C++ friends, but in a type—safe fashion. A Singleton Registry as described by 

Gamma et al. [Gamma95, p.130-132] is defined via the SingletonRegistry<T> interface. The 
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LoadableSingletonRegistry<T> is an implementation that allows for type—safe dynamic loading of 

singleton types based on class names. The actual singleton creation is deferred to the singleton types themselves 

and no registration is required. This is clearly more flexible than the canonical implementation.  

8.2. Structural Patterns 

8.2.1. Adapter 

Adapter is a Structural pattern with both Class and Object scope. The implementation is located in the 

dk.rode.thesis.adapter package. 

8.2.1.1. Intent 

Convert the interface of a class into another interface clients expect. Adapter lets classes work together that 

could not otherwise because of incompatible interfaces [Gamma95, p.139]. 

8.2.1.2. Structure 

Figure 8.6 illustrates the Adapter implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.6 — Adapter UML Class diagram 

 

8.2.1.3. Participants 

Table 8.7 describes the Adapter participants in the words of Gamma et al. [Gamma95, p.141] and lists the 

corresponding implementations developed in the evaluation. 
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Table 8.7 — Adapter participants 
 

Participant 
 

Description 

 

Implementation 

Target  Defines the domain—specific interface that Client use. meta.model.Sequence<E>, 
java.util.Iterator<E> 

Client  Collaborates with objects conforming to the Target 
interface.  

Main 

Adaptee  Defines an existing interface that needs adapting.  Any Sequence<E> implementation 

Adapter  Adapts the interface of Adaptee to the Target 
interface.  

SequenceAdapter<E,T> (using 

AdapterDelegate<S,T>), 
IteratorSequence<E> 

8.2.1.4. Implementation 

Implementing class adapters in C++ –– Java does not support multiple inheritance and thus not class 

adapters. Dynamic proxies can be used to simulate private implementation as illustrated in the 

meta.reflect.ProxyFactory class, but it still requires composition as in object adapters. Pluggable 

adapters –– a) The set of abstract operations to use is a design choice. Sub—class implementation for adapter 

functionality is used by any adapter that utilises inner classes such as the proxy.SequenceProxyFactory 

class. b) The SequenceAdapter<E,T> class uses composition and forwards requests to the adaptee (sequence) 

stored internally. c) The SequenceAdapter<E,T> is parameterised and uses AdapterDelegate<S,T> 

instances. 

8.2.2. Bridge 

Bridge is a Structural pattern with Object scope. The dk.rode.thesis.bridge package contains the 

implementation. 

8.2.2.1. Intent 

Decouple an abstraction from its implementation so that the two can vary independently [Gamma95, p.151]. 

8.2.2.2. Structure 

Figure 8.7 illustrates the Bridge implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

8.2.2.3. Participants 

Table 8.8 describes the Bridge participants in the words of Gamma et al. [Gamma95, p.154] and lists the 

corresponding implementations developed in the evaluation. 

8.2.2.4. Implementation 

Only one implementor –– Use of a single Implementor is a design choice. Java scope rules allow 

implementations to be hidden from clients or by using anonymous adapters for the Implementor 

implementation. Creating the right Implementor object –– Design choice. Sharing implementors –– The 

Main (test) class in the Bridge implementation utilises the meta.reflect.ProxyFactory to manage shared 

implementations. The sharing is handled via the Handle/Body idiom implemented in Java using dynamic proxies. 
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Using multiple inheritance –– Java does not support multiple inheritance, but as Gamma et al. also note, this 

binds the implementation to the abstraction at compile—time. Composition can be used instead as illustrated by 

the SequenceAbstraction<E> class, which can be either fixed or changeable. 

 
 

Figure 8.7 — Bridge UML Class diagram 
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Table 8.8 — Bridge participants 
 

Participant 
 

Description 

 

Implementation 

Abstraction  Defines the abstraction‘s interface. 

 Maintains a reference to an object of type 
Implementor.  

SequenceAbstraction<E> 

RefinedAbstraction  Extends the interface defined by Abstraction. SynchronisedSequenceAbstraction<E>, 
MemorizableSequenceAbstraction<E> 

Implementor  Defines the interface for implementation 
classes. This interface does not have to 
correspond exactly to Abstraction‘s interface; in 
fact, the two interfaces can be quite different. 
Typically, the Implementor interface provides 
only primitive operations, and Abstraction 
defines higher—level operations based on these 
primitives. 

SequenceValueGenerator<E>  
 

SequenceValueCollection<E,C>,  
SequenceValueSet<E,C>  
 
 

ConcreteImplementor  Implements the Implementor interface and 
defines its concrete implementation. 

SequenceValueArrayList<E>, 

SequenceValueHashSet<E>, 

SequenceValueLinkedHashSet<E>, 

SequenceValueTreeSet<E>, 
SequenceValueRange 

8.2.3. Composite 

Composite is a Structural pattern with Object scope. The dk.rode.thesis.composite package contains the 

implementation. 

8.2.3.1. Intent 

Compose objects into tree structures to represent part—whole hierarchies. Composite lets clients treat 

individual objects and compositions of objects uniformly [Gamma95, p.163]. 

8.2.3.2. Structure 

Figure 8.8 illustrates the Composite implementation as an UML Class diagram, where the pattern participants 

can also be identified. The pattern participants are described in the next section.  

8.2.3.3. Participants 

Table 8.9 describes the Composite participants in the words of Gamma et al. [Gamma95, p.165] and lists the 

corresponding implementations developed in the evaluation. 

8.2.3.4. Implementation 

Explicit parent references –– Design choice; not implemented here. Sharing components –– Design choice. 

Maximizing the Component interface –– Design choice. Declaring the child management operations –– 

The Composite implementation opts for type safety over transparency as discussed by Gamma et al. [Gamma95, 

p.167-168]. Child management is defined in the Composite (CompositeSequence<E>) participant because it 

can never make sense for Leaf components (Sequence<E>). This makes sense in Java because unlike C++, the 

instanceof operator provides a safe way to cast to a given type. Should Component implement a list of 

Components? –– Children are stored in the Composite participant. Child ordering –– The 
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CompositeStrategy enumeration defines strategies for traversing the composite structure, such as depth—

first and breath—first. Caching to improve performance –– Design choice. The strategies defined here allow 

retrieved lists to be reused without the need to traverse the composite structure again. Who should delete 

components? –– Java employs garbage collection. What is the best data structure for storing 

components? –– This is a design choice. AbstractCompositeSequence<E> uses a 

java.util.RandomAccess list for fast traversal. 

 
 

Figure 8.8 — Composite UML Class diagram 

 

 
 

Table 8.9 — Composite participants 
 

Participant 
 

Description 

 

Implementation 

Component  Declares the interface for objects in the composition. 

 Implements default behaviour for the interface 
common to all classes, as appropriate.  

 Declares an interface for accessing and managing its 
child components. 

 Defines an interface for accessing a component‘s 
parent in the recursive structure, and implements it if 
that is appropriate (optional). 

meta.model.Sequence<E> 

Leaf  Represents a leaf object in the composition. A leaf Any Sequence<E> implementation 
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Table 8.9 — Composite participants 
 

Participant 
 

Description 

 

Implementation 

has no children. 

 Defines behaviour for primitive objects in the 
composition.  

Composite  Defines behaviour for components having children. 

 Stores child components.  

 Implements child—related operations in the 
Component interface. 

CompositeSequence<E>, 

AbstractCompositeSequence<E>,  
CharSequenceCompositeSequence 
 
CompositeStrategy 

Client  Manipulates objects in the composition through the 
Component interface. 

Main 

8.2.4. Decorator 

Decorator is a Structural pattern with Object scope. The dk.rode.thesis.decorator package contains the 

implementation. 

8.2.4.1. Intent 

Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to sub—

classing for extending functionality [Gamma95, p.175]. 

8.2.4.2. Structure 

Figure 8.9 illustrates the Decorator implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

8.2.4.3. Participants 

Table 8.10 describes the Decorator participants in the words of Gamma et al. [Gamma95, p.177] and lists the 

corresponding implementations developed in the evaluation.  

 
 

Table 8.10 — Decorator participants 
 

Participant 
 

Description 

 

Implementation 

Component  Defines the interface for objects that can have 
responsibilities added to them dynamically. 

meta.model.Sequence<E> 

ConcreteComponent  Defines an object to which additional 
responsibilities can be attached.  

Any Sequence<E> implementation 

Decorator  Maintains a reference to a Component object and 
defines an interface that conforms to 
Component‘s interface.  

SequenceDecorator<E> 
 

ConcreteDecorator  Adds responsibilities to the Component. AppenderDecorator, DuplexDecorator, 
UppercaseDecorator 

 

The SequenceDecorator<E> class is used in several other pattern implementations as well, including Iterator, 

Proxy, and Visitor. 
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Figure 8.9 — Decorator UML Class diagram 

 

8.2.4.4. Implementation 

Interface conformance –– Implementing a common interface is sufficient in Java; inheritance is not required. 

SequenceDecorator<E> implements Sequence<E> and inherits meta.model.AbstractSequence<E>, but 

can decorate any sequence type. Omitting the abstract decorator class –– Design choice. Keeping 

Component classes lightweight –– Design choice, but one that cannot always be controlled in case API 

classes, for example, have to be decorated. Changing the skin of an object vs. changing the guts –– Design 

choice. Abstract decorator types can make it easier to implement multiple concrete decorator types as 

illustrated with the abstract SequenceDecorator<E> class. 

8.2.5. Facade 

Facade is Structural with Object scope. The dk.rode.thesis.facade package contains the implementation. 

8.2.5.1. Intent 

Provide a unified interface to a set of interfaces in a sub—system. Facade defines a higher—level interface that 

makes the sub—system easier to use [Gamma95, p.185]. 

8.2.5.2. Structure 

Figure 8.10 illustrates the Facade implementation as an UML Class diagram, where the pattern participants can 
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also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.10 — Facade UML Class diagram 

 

8.2.5.3. Participants 

Table 8.11 describes the Facade participants in the words of Gamma et al. [Gamma95, p.187] and lists the 

corresponding implementations developed in the evaluation. 

 
 

Table 8.11 — Facade participants 
 

Participant 
 

Description 

 

Implementation 

Facade  Knows which sub—system classes are responsible 
for a request. 

 Delegates client requests to appropriate sub—
system objects.  

MathFacade 

Subsystem Class  Implement sub—system functionality. 

 Handle work assigned by Facade object. 

 Have no knowledge of the facade; that is, they 
keep no reference to it.  

AckermannSequence, 

FibonacciSequence, RandomSequence, 

UnboundedRandomSequence, 

iterator.IterableSequence<E>, 
state.ReversiblePrimeSequence 

8.2.5.4. Implementation 

Reducing client/sub—system coupling –– Design choice, but may require factory creation. The 

MathFacade class is implemented as a Singleton. Public vs. private sub—system classes –– Design choice. 

Packages in Java can provide encapsulation and implicitly information hiding (access modifiers) for sub—systems. 

MathFacade, FibonacciSequence, and RandomSequence represent public classes, while 
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AckermannSequence and UnboundedRandomSequence are private sub—system classes and are as such 

declared package private. Sub—system classes from other packages must be public to be utilised. 

8.2.6. Flyweight 

Flyweight is a Structural pattern with Object scope. The dk.rode.thesis.flyweight package contains the 

implementation. 

8.2.6.1. Intent 

Use sharing to support large numbers of fine—grained objects efficiently [Gamma95, p.195]. 

8.2.6.2. Structure 

Figure 8.11 illustrates the Flyweight implementation as an UML Class diagram, where the pattern participants 

can also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.11 — Flyweight UML Class diagram 

 

8.2.6.3. Participants 

Table 8.12 describes the Flyweight participants in the words of Gamma et al. [Gamma95, p.198-199] and lists 
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the corresponding implementations developed in the evaluation. 

 
 

Table 8.12 — Flyweight participants 
 

Participant 
 

Description 

 

Implementation 

Flyweight  Declares an interface through which flyweights can receive 
and act on extrinsic state. 

Textual<T> 
 
Character 

ConcreteFlyweight  Implements the Flyweight interface and adds storage for 
intrinsic state, if any. A ConcreteFlyweight object must 
be sharable. Any state it stores must be intrinsic; that is, it 
must be independent of the ConcreteFlyweight object‘s 
context. 

Word, 

AbstractCharacter, 

Letter, Symbol, 
Whitespace 

UnsharedConcreteFlyweight  Not all Flyweight sub—classes need to be shared. The 
Flyweight interface enables sharing; it does not enforce 
it. It is common for UnsharedConcreteFlyweight objects 
to have ConcreteFlyweight objects as children at some 
level in the flyweight object structure. 

Sentence 

FlyweightFactory  Creates and manages flyweight objects. 

 Ensures that flyweights are shared properly. When a client 
requests a flyweight, the FlyweightFactory object 
supplies an existing instance or creates one, if none exists. 

CharacterFactory 

Client  Maintains a reference to flyweight(s). 

 Computes or stores the extrinsic state of flyweight(s). 

Main 

8.2.6.4. Implementation 

Removing extrinsic state –– Design choice. Here, java.util.Locale represents extrinsic state for sentence 

structures, because it rarely makes sense to store a locale with each character, word, or even sentence. 

Managing shared objects –– The CharacterFactory class uses a java.util.HashMap<K,V> to store 

flyweights, which are created on demand only in a thread—safe manner. The 

java.lang.Object.hashCode() and java.lang.Object.equals(Object) methods makes it very easy to 

handle flyweights using the Java Collections framework. Purging of old flyweights is a design choice.  

8.2.7. Proxy 

Proxy is a Structural pattern with Object scope. The implementation is located in the dk.rode.thesis.proxy 

package. 

8.2.7.1. Intent 

Provide a surrogate placeholder for another object to control access to it [Gamma95, p.207]. 

8.2.7.2. Structure 

Figure 8.12 illustrates the Proxy implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section. 
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Figure 8.12 — Proxy UML Class diagram 

 

8.2.7.3. Participants 

Table 8.13 describes the Proxy participants in the words of Gamma et al. [Gamma95, p.209-210] and lists the 

corresponding implementations developed in the evaluation. 

 
 

Table 8.13 — Proxy participants 
 

Participant 
 

Description 

 

Implementation 

Proxy  Maintains a reference that lets the proxy access the real 
subject. Proxy may refer to a Subject if the RealSubject 
and Subject interfaces are the same. 

 Provides an interface identical to Subject‘s so that a proxy 
can be substituted for the real subject.  

 Controls access to the real subject and may be responsible 
for creating and deleting it. 

 Other responsibilities depend on the kind of proxy (remote 
proxy, virtual proxy, protection proxy, or smart reference). 

SynchronisedSequence<E>,  

NonResettableSequence<E>,  

ImmutableSequence<E>,  

java.lang.reflect.Proxy objects 
 

(SequenceProxyFactory, 

meta.reflect.ProxyFactory)  

Subject  Defines the common interface for RealSubject and Proxy so 
that a Proxy can be used anywhere a RealSubject is 
expected. 

meta.model.Sequence<E> 

RealSubject  Defines the real object that the proxy represents. Any Sequence<E> implementation 



EVALUATING SOFTWARE DESIGN PATTERNS –– EVALUATION MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 156 of 197 

8.2.7.4. Implementation 

Overloading the member access operator in C++ –– Java does not support operator overloading, but 

dynamic proxies can simulate the behaviour. The SequenceProxyFactory.getVirtualSequence(..) 

method returns a virtual (dynamic) proxy that will not create an actual Sequence<E> instance until a method 

declared in the Sequence<E> interface is invoked. Methods declared in other types can still be invoked, for 

example java.lang.Object.toString(). However, the actual class of the proxied sequence cannot be used 

for casts or instanceof tests using the proxy, since the class is java.lang.reflect.Proxy. This can be a 

severe limitation on dynamic proxy usage since the client will not (necessarily) know a proxy is accessed in place 

of the real object. As java.lang.Object.equals(Object), for example, utilises instanceof, this can be 

a problem for object comparison and collection usage. This also affects the Java Handle/Body idiom used to 

manage shared objects acquired from meta.reflect.ProxyFactory. Using doesNotUnderstand in 

Smalltalk –– Not possible in Java 6, since the signature of a method to be invoked is determined at compile—

time, while only the actual type of the (polymorphic) object is determined at runtime [Sierra06, p.111]. 

Reflection does not allow creation of new methods at runtime, so only compile—time known methods can be 

invoked. However, method names (strings) can be used to identify methods, but will require an elaborate 

―framework‖ to fetch methods, dispatch if found, and error handling if not found (―does not understand‖). This 

principle is used in several dynamic proxy implementations. Proxy does not always have to know the type 

of the RealSubject –– The virtual sequence described above uses type literals to supply the generic type to be 

created. The protection proxies defined operate on interfaces, for example ImmutableSequence<E> that 

makes any Sequence<E> type immutable. 

8.3. Behavioural Patterns 

8.3.1. Chain of Responsibility 

Chain of Responsibility is a Behavioural pattern with Object scope. The implementation is located in the 

dk.rode.thesis.chainofresponsibility package. 

8.3.1.1. Intent 

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the 

request. Chain the receiving objects and pass the request along the chain until an object handles it [Gamma95, 

p.223]. 

8.3.1.2. Structure 

Figure 8.13 illustrates the Chain of Responsibility implementation as an UML Class diagram, where the pattern 

participants can also be identified. The pattern participants are described in the next section. 

 

 

 

 



EVALUATING SOFTWARE DESIGN PATTERNS –– EVALUATION MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 157 of 197 

 

Figure 8.13 — Chain of Responsibility UML Class diagram 

 

8.3.1.3. Participants 

Table 8.14 describes the Chain of Responsibility participants in the words of Gamma et al. [Gamma95, p.225-

226] and lists the corresponding implementations developed in the evaluation. 

 
 

Table 8.14 — Chain of Responsibility participants 
 

Participant 
 

Description 

 

Implementation 

Handler  Defines an interface for handling requests. 

 Implements the successor link (optional).  

Handler<R> 

ConcreteHandler  Handles requests it is responsible for. 

 Can access its successor. 

 If the ConcreteHandler can handle the request, it does so; 
otherwise it forwards the request to its successor.  

CharacterHandler 

 

LetterHandler, 

LetterCaseHandler, 

SymbolHandler, 
WhitespaceHandler  
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Table 8.14 — Chain of Responsibility participants 
 

Participant 
 

Description 

 

Implementation 

Client  Initiates the request to a ConcreteHandler object on the chain. Main 

 

The implementation makes the chain explicit, represented by the HandlerChain<R> class. Ergo, the name and 

minimal description of the ―pseudo—participants‖ as listed in table 8.15 below are not defined by Gamma et al.  

 
 

Table 8.15 — Additional Chain of Responsibility entities 
 

Name 
 

Description 

 

Implementation 

HandlerChain  Maintains a chain of ConcreteHandler objects, which may be 
altered at any time. 

 Manages the forwarding of reqests to ConcreteHandler objects 
until a matching handler is found, if any. 

 Declares operations for accessing and removing handlers. 

 Doubles as a HandlerLink.  

HandlerChain<R> 

 

AbstractHandlerChain<R>, 

StandardHandlerChain<R>, 
WeakHandlerChain<R> 

HandlerLink  Forwards an unhandled request to the next ConcreteHandler 
represented by the link. The link may represent a 
ConcreteHandler or a HandlerChain. 

HandlerLink<R> 

8.3.1.4. Implementation 

Implementing the successor chain –– The implementation differs from the canonical implementation by 

Gamma et al. in that it makes the chain explicit, represented by the HandlerChain<R> type. This means a 

concrete handler can only access its successor through the chain as it does not store a reference to it itself. This 

reduces coupling between handlers; handlers can participate in several chains; and allow a chain to be altered 

at any time by adding or removing handlers to and from it. Connecting successors –– The HandlerLink<R> 

type represents a link to the next handler in the chain, if any. Representing requests –– The type of request 

is specified using generics in the Handler<R> class, where R is the type of request. This is compile—time type—

safe and flexible. Automatic forwarding in Smalltalk –– Not supported in Java (but see section 8.2.7.4).  

8.3.2. Command 

Command is a Behavioural pattern with Object scope. The dk.rode.thesis.command package contains the 

implementation. 

8.3.2.1. Intent 

Encapsulate a request as an object, thereby letting you parameterise clients with different requests, queue or 

log requests, and support undoable operations [Gamma95, p.233]. 

8.3.2.2. Structure 

Figure 8.14 illustrates the Command implementation as an UML Class diagram, where the pattern participants 

can also be identified. The pattern participants are described in the next section. 
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Figure 8.14 — Command UML Class diagram 

 

8.3.2.3. Participants 

Table 8.16 describes the Command participants in the words of Gamma et al. [Gamma95, p.236-237] and lists 

the corresponding implementations developed in the evaluation. 

 
 

Table 8.16 — Command participants 
 

Participant 
 

Description 

 

Implementation 

Command  Declares an interface for executing an operation. Command<E> 
 
SequenceCommand<E> 

ConcreteCommand  Defines a binding between a Receiver object and 
an action. 

 Implements execute by invoking the corresponding 
operation(s) on Receiver. 

CompositeCommand<E>, NextCommand<E>, 

ResetCommand<E>, ReverseCommand<E>, 

LogCommand<E>, NullCommand<E> 

Client  Creates a ConcreteCommand object and sets its 
receiver. 

Main 

Invoker  Asks the command to carry out the request. CommandProcessor 

Receiver  Knows how to perform the operations associated 
with carrying out a request. Any class may serve as 
a Receiver. 

Any Sequence<E> implementation 

 

The implementation differs from the canonical implementation by Gamma et al. in that it uses a Command 

Processor to maintain, execute, and possibly undo commands, corresponding to a simple variant of the ―POSA‖ 
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Command Processor pattern [Buschmann96, p.277]. The processor thus functions as the Invoker participant, but 

it will be handed the commands to execute by the Client. Hence, the name and minimal description of the 

―pseudo—participant‖ as listed in table 8.17 below are not defined by Gamma et al., but by Buschmann et al. 

[Buschmann96, p.280]. 

 
 

Table 8.17 — Additional Command entities 
 

Name 
 

Description 

 

Implementation 

CommandProcessor  Activates Command execution, including 
commands spawned by an executed 
ConcreteCommand. 

 Maintains Command objects. 

 Provides additional services related to 
command execution.  

CommandProcessor, 
CommandProcessingResult<E> 

 

The execution of a Command<E> may spawn new commands to be executed immediately by the 

CommandProcessor in a depth—first manner. As far as we know, this is a novel approach to command 

execution. This lessen need for macro commands considerably and allow more control of command execution as 

composite (macro) commands no longer handle the execution of contained commands. Undo of spawned 

commands is possible in several different ways. 

8.3.2.4. Implementation 

How intelligent should the command be? –– Design choice. Supporting undo and redo –– The 

SequenceCommand<E> class uses mementos for undo, while sub—classes also employ other means of undo as 

necessary. The CommandProcessor class implicit uses a history list in form of a collection of commands passed 

to it for execution. Avoiding error accumulation in the undo process –– By using the CommandProcessor 

class, the history list, undo, and error handling is made explicit and hence not up to the individual command. 

Error handling supports spawned commands. The implementation throws an exception in case undo fails, but 

different error handling strategies can be applied because of centralised control. Using C++ templates –– This 

corresponds to using generics with an upper bound as described in section 8.1.3.4.  

8.3.3. Interpreter 

Interpreter is a Behavioural pattern with Class scope. The dk.rode.thesis.interpreter package contains 

the implementation. 

8.3.3.1. Intent 

Given a language, define a representation for its grammar along with an interpreter that uses the representation 

to interpret sentences in the language [Gamma95, p.243]. 

8.3.3.2. Structure 

Figure 8.15 illustrates the Interpreter implementation as an UML Class diagram, where the pattern participants 

can also be identified. The pattern participants are described in the next section. 
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Figure 8.15 — Interpreter UML Class diagram 

 

8.3.3.3. Participants 

Table 8.18 describes the Interpreter participants in the words of Gamma et al. [Gamma95, p.245-246] and lists 

the corresponding implementations developed in the evaluation. 

 
 

Table 8.18 — Interpreter participants 
 

Participant 
 

Description 

 

Implementation 

AbstractExpression  Declares an abstract interpret operation that is 
common to all nodes in the abstract syntax tree. 

Expression<E> 

 

TypedExpression<E>, 
InitialisableExpression<E>  
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Table 8.18 — Interpreter participants 
 

Participant 
 

Description 

 

Implementation 

TerminalExpression  Implements an interpret operation associated with 
terminal symbols in the grammar. 

 An instance is required for every terminal symbol in a 
sentence. 

TerminalExpression<E>, 

SequenceExpression<T,E>, 

CurrentExpression<E>, 

NextExpression<E>, 

ResetExpression<E>, 

ReverseExpression<E>, 
SetExpression<E> 

NonTerminalExpression  One such class is required for every rule R ::= 

R1R2…Rn in the grammar. 

 Maintains instance variables of type 

AbstractExpression for each of the symbols R1 

through Rn. 

 Implements an interpret operation for nonterminal 
symbols in the grammar. interpret typically calls 

itself recursively on the variables representing R1 

through Rn. 

NonTerminalExpression<E>,  

BinaryExpression<T,E>, 

AndExpression, 

AssignmentExpression<E>, 

BreakExpression<E>, 

CompareExpression<E>, 

ConditionalExpression<E>, 

ConstantExpression<E>, 

EqualExpression, 

FlowExpression<E>,  

NotExpression, OrExpression, 
VariableExpression<E>  

Context  Contains information that is global to the interpreter. Context 

Client  Builds (or is given) an abstract syntax tree 
representing a particular sentence in the language 
that the grammar defines. The abstract syntax tree is 
assembled from instances of the 
NonTerminalExpression and TerminalExpression 
classes. 

 Invokes the interpret operation. 

Main 

 

Unlike Gamma et al., the implementation makes the interpreter explicit. This allows for much better error 

handling and transfer of evaluation control. Hence, the name and minimal description of the ―pseudo—

participant‖ as listed in table 8.19 below are not defined by Gamma et al. 

 
 

Table 8.19 — Additional Interpreter entities 
 

Name 
 

Description 

 

Implementation 

Interpreter  Invokes the interpret operation on the Expression 
supplied by the Client. 

 Is used by the Client in favour of directly invoking 
interpret on Expression objects. 

 May provide additional services related to expression 
interpretation.  

Interpreter<T> 

8.3.3.4. Implementation 

Creating the abstract syntax tree –– Design choice. Here, the Builder implementation is used to build 

expressions that can be assembled. Defining the interpret operation –– The Expression<E> type defines 

the evaluate(Context) method, but the Interpreter<T> class defines the interpret method, performs 

error handling, and flow control. Sharing terminal symbols with the Flyweight pattern –– Design choice. 
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8.3.4. Iterator 

Iterator is a Behavioural pattern with Object scope. The dk.rode.thesis.iterator package contains the 

implementation. 

8.3.4.1. Intent 

Provide a way to access the elements of an aggregate object sequentially without exposing its underlying 

representation [Gamma95, p.257]. 

8.3.4.2. Structure 

Figure 8.16 illustrates the Iterator implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.16 — Iterator UML Class diagram 

 

8.3.4.3. Participants 

Table 8.20 describes the Iterator participants in the words of Gamma et al. [Gamma95, p.259] and lists the 

corresponding implementations developed in the evaluation. 
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Table 8.20 — Iterator participants 
 

Participant 
 

Description 

 

Implementation 

Iterator  Defines an interface for accessing and traversing 
elements. 

java.util.Iterator<E> (external), 

ProcessableSequence<E>, 

ValueProcessor<E> (internal) 
 

ConcreteIterator  Implements the Iterator interface. 

 Keeps track of the current position in the traversal 
of the aggregate. 

SequenceIterator<E> (external), 

LoggingValueProcessor<E> (internal)  

Aggregate  Defines an interface for creating an Iterator 
object. 

java.lang.Iterable<T> (external) 

ConcreteAggregate  Implements the Iterator creation interface 
(Aggregate) to return an instance of the proper 
ConcreteIterator. 

IterableSequence<E> (external) 

 

No classes have been defined to represent Aggregate and ConcreteAggregate for internal iterators. Java 6 

defines no standard interface for internal iterators. The creation is left at the discretion of the context using 

internal iterators.  

8.3.4.4. Implementation 

Java has built—in API and language support for the Iterator pattern. Who controls the iteration? –– The 

SequenceIterator<E> class represents an external iterator, while the ProcessableSequence<E> 

represents an internal iterator. Who defines the traversal algorithm? –– The 

composite.CompositeStrategy utilises package private access to ensure encapsulation and information 

hiding is not violated when the traversal algorithm is external. How robust is the iterator? –– Design choice. 

Standard iterators in Java are fail—fast, and fail immediately in case of concurrent modification. Additional 

Iterator operations –– Design choice. Using polymorphic iterators in C++ –– java.lang.Iterable<T> 

defines a factory method to return a java.util.Iterator<E> instance and the usage is illustrated in the 

IterableSequence<E> class. Iterators may have privileged access –– Illustrated in the 

meta.reflect.CallerClass.CallerIterator<C> inner class. Iterators for composites –– The 

composite.CompositeStrategy determines how the composite structure should be traversed. Null 

iterators –– Trivial, though note that making a null iterator for the meta.model.Sequence<E> type is not 

possible, because sequence semantics require that a sequence always have at least a single value. 

8.3.5. Mediator 

Mediator is a Behavioural pattern with Object scope. This pattern is not implemented due to a lack of 

applicability because of its abstraction and granularity level. It offers no new information compared to the rest 

of the ―Gang of Four‖ patterns with regards to language functionality. 

8.3.5.1. Intent 

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping 

objects from referring to each other explicitly, and it lets you vary their interaction independently [Gamma95, 
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p.273]. 

8.3.5.2. Participants 

Table 8.21 describes the Mediator participants in the words of Gamma et al. [Gamma95, p.277]. 

 
 

Table 8.21 — Mediator participants 
 

Participant 
 

Description 

 

Implementation 

Mediator  Defines an interface for communicating with 
Colleague objects. 

- 
 

ConcreteMediator  Implements cooperative behaviour by coordinating 
Colleague objects. 

 Knows and maintains its colleagues. 

- 

Colleague Class  Each Colleague class knows its Mediator object. 

 Each Colleague communicates with its mediator 
whenever it would have otherwise communicated 
with another colleague. 

- 

8.3.5.3. Implementation 

As stated, the Mediator pattern has not been implemented because it only addresses general design issues. We 

still address the Implementation element, since it only discuss two items. Omitting the abstract Mediator 

class –– Design choice. Colleague/Mediator communication –– Design choice. Using the Observer pattern is 

possible as the means to communicate, for example the stand—alone observer.ObserverManager class that 

could handle different kind of colleagues without requiring them to implement a common super type. Passing 

itself as an argument is a common approach with trivial implementation. Also supported by ObserverManager. 

8.3.6. Memento 

Memento is Behavioural with Object scope. The implementation is located in the dk.rode.thesis.memento 

package. 

8.3.6.1. Intent 

Without violating encapsulation, capture and externalise an objects internal state so that the object can be 

restored to this state later [Gamma95, p.283]. 

 

Note that according to our separation of encapsulation and information hiding into two distinct concepts as 

described in section 2.1.1, encapsulation as described above refers to both concepts. Encapsulation must not be 

broken in the sense that the state must still be localised in the object, which must be hidden to shield it from 

unwanted access. 

8.3.6.2. Structure 

Figure 8.17 illustrates the Memento implementation as an UML Class diagram, where the pattern participants 

can also be identified. The pattern participants are described in the next section. 
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Figure 8.17 — Memento UML Class diagram 

 

8.3.6.3. Participants 

Table 8.22 describes the Memento participants in the words of Gamma et al. [Gamma95, p.285] and lists the 

corresponding implementations developed in the evaluation. 

 
 

Table 8.22 — Memento participants 
 

Participant 
 

Description 

 

Implementation 

Memento  Stores internal state of the Originator object. The 
memento may store as much or as little of the 
originator‘s internal state as necessary at its 
originator‘s discretion. 

 Protects against access by objects other than the 
originator. Mementos have effectively two 
interfaces. Caretaker sees a narrow interface to 
the Memento – it can only pass the memento to 
other objects. Originator, in contrast, sees a wide 
interface, one that lets it access all the data 
necessary to restore itself to its previous state. 
Ideally, only the originator that produced the 
memento would be permitted to access the 
memento‘s internal state. 

SequenceMemento<E>, 
GuardedSequenceMemento<E>  
 

Originator  Creates a memento containing a snapshot of its Any MemorizableSequence<E> 

implementation like RangeSequence and 
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Table 8.22 — Memento participants 
 

Participant 
 

Description 

 

Implementation 

current internal state. 

 Use the memento to restore its internal state. 

MemorizableEnglishAlphabetSequence 

Caretaker  Is responsible for the memento‘s safekeeping. 

 Never operates on or examines the contents of a 
memento. 

Main 

8.3.6.4. Implementation 

Language support –– Java does not support narrow (public) and wide (private) interface functionality because 

all methods declared in an interface must be public. A class may define and implement private methods, but 

they are inaccessible to other types. The GuardedSequenceMemento<E> class illustrates how private methods 

par design have to be made public for compile—time safety, but are guarded at runtime to ensure that only legal 

callers are allowed (see section 7.1.4.1). Storing incremental changes –– Design choice. The 

command.SequenceCommand<E> class use mementos to store the complete state. 

8.3.7. Observer 

Observer is Behavioural with Object scope. The implementation is located in the dk.rode.thesis.observer 

package. 

8.3.7.1. Intent 

Define a one—to—many dependency between objects so that when one object changes state, all dependants are 

notified and updated automatically [Gamma95, p.293]. 

8.3.7.2. Structure 

Figure 8.18 illustrates the Observer implementation as an UML Class diagram, where the pattern participants 

can also be identified. The pattern participants are described in the next section.  

8.3.7.3. Participants 

Table 8.23 describes the Observer participants in the words of Gamma et al. [Gamma95, p.295] and lists the 

corresponding implementations developed in the evaluation. 
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Figure 8.18 — Observer UML Class diagram 
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Table 8.23 — Observer participants 
 

Participant 
 

Description 

 

Implementation 

Subject  Knows its observers. Any number of Observer 
objects may observe a subject. 

 Provides an interface for attaching and 
detaching Observer objects. 

Observable<O>, AspectObservable<O,A> 
 

ObservableSequence<O,A,E>, 
AspectObservableSequence<O,A,E> 

 

SequenceObserversSequence<E,A>,  
AnnotatedObserversSequence<E>  

Observer  Defines an updating interface for objects that 
should be notified of changes in a subject. 

SequenceObserver<A> and any 

java.lang.Object annotated with the 

meta.reflect.@Executor annotation when used 

with ObserverManager or a sub—class of 
AnnotatedObserversSequence<E> 

ConcreteSubject  Stores state of interest to ConcreteObserver 
objects. 

 Sends a notification to its observers when its 
state changes. 

ObserverManager,  
DateSequence  
 

SequenceObserversSequenceDecorator<E,A>,  
AnnotatedObserversSequenceDecorator<E>  
 

ConcreteObserver  Maintains a reference to a ConcreteSubject 
object. 

 Stores state that should be consistent with the 
subject‘s. 

 Implements the Observer updating interface to 
keep its state consistent with the subject‘s. 

CorrelatedSequenceObserver,  

PrintSequenceObserver,  

ProbeSequenceObserver,  
BirthdayRegistry  
 

8.3.7.4. Implementation 

Mapping subjects to their observers –– java.util.Map<K,V> is used to store observers for fast lookup. 

Observing more than one subject –– The stand—alone ObserverManager class can manage and notify 

observers, typically used as a delegate by another object in a composition. It can store observers with different 

types, but using the same signature to notify the observers. Notification methods are specified via annotations, 

Its notifyObservers(java.lang.Object…) method uses varargs and it is up to the client to specify the 

signature of the actual observer notification methods and to supply the proper arguments. Hence, whether or 

not the subject is passed to the notification methods is a design choice based on the signature of the notification 

methods used. The AnnotatedObserversSequence<E> uses ObserverManager as a delegate and passes 

itself as the first argument to notifyObservers(Object…) when notification is performed. Observers can 

thus observe several subjects. Who triggers the update? –– Design choice. ObservableSequence<O,A,E> 

implementations issue notifications when their internal state changes, for example on invocation on next() and 

reset(). Dangling references to deleted subjects –– Subjects storing observers as hard references will 

prevent observers from being garbage collected. On the other hand, the ObserverManager class stores 

observers as weak references and if there are no other references to a given observer, it will be garbage 

collected. The manager handles this and purges weak references transparently when the observer has been 

garbage collected. Making sure Subject state is self—consistent before notification –– Template Method 

is used in the SequenceObserversSequence<E,A> and AnnotatedObserversSequence<E> classes to 

handle the notification in a state—consistent manner. Avoiding observer—specific update protocols –– The 

ObserverManager component can be used for both push and pull semantics because the type of observers and 

notification methods are configurable. Specifying modifications of interest explicitly –– Implementations of 
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AspectObservable<O,A> allow observers of type O to subscribe to specific aspects of type A. Encapsulating 

complex update semantics –– The ObserverManager class can be considered a Change Manager. Sub—

classes could simply override the notification method for different notification strategies. 

8.3.8. State 

State is a Behavioural pattern with Object scope. The dk.rode.thesis.state package contains the 

implementation. 

8.3.8.1. Intent 

Allow an object to alter its behaviour when its internal state changes. The object will appear to change its class 

[Gamma95, p.305]. 

8.3.8.2. Structure 

Figure 8.19 illustrates the State implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

8.3.8.3. Participants 

Table 8.24 describes the State participants in the words of Gamma et al. [Gamma95, p.306-307] and lists the 

corresponding implementations developed in the evaluation. 

 
 

Table 8.24 — State participants 
 

Participant 
 

Description 

 

Implementation 

Context  Defines the interface of interest to clients. 

 Maintains an instance of a ConcreteState sub—class 
that defines the current state. 

StateableSequence<E>, 

AbstractStateableSequence<E>,  
ReversiblePrimeSequence  
 

StepSequence  

State  Defines an interface for encapsulating the behaviour 
associated with a particular state of the Context. 

FunctionalState<E> 

 

StepSequenceImpl 

ConcreteState  Each sub—class implements a behaviour associated 
with a state of the Context. 

Each constant in the 
ReversiblePrimeSequence.PrimeState 
enumeration 

 
EvenSequence and OddSequence 
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Figure 8.19 — State UML Class diagram 

 

8.3.8.4. Implementation 

Who defines the state transitions? –– Design choice. Transitions are primarily handled by concrete states, 

such as the EvenSequence class and the ReversiblePrimeSequence.PrimeState constants, but also by 

ReversiblePrimeSequence when reversed. A table—based alternative –– Design choice. Trivial, not 
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implemented. Creating and destroying State objects –– ReversiblePrimeSequence.PrimeState is an 

enumeration and all states are thus known beforehand. The states are stateless, small, and cheap to create. 

Creation (and destruction) is handled automatically and singleton behaviour for each state is guaranteed by the 

compiler. EvenSequence and OddSequence states are created on demand and garbage collected when no 

longer used. Using dynamic inheritance –– Not supported directly by Java, but dynamic proxies can simulate 

the behaviour. The invocation handler used by the proxy can change the target object of a given method 

(signature) to supply different implementations at runtime. This is illustrated in the StepSequence dynamic 

proxy that uses instances of the EvenSequence and OddSequence classes as two different implementations. 

8.3.9. Strategy 

Strategy is a Behavioural pattern with Object scope. Also known as Policy. The implementation is located in the 

dk.rode.thesis.strategy package. 

8.3.9.1. Intent 

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the 

algorithm vary independently from clients that use it [Gamma95, p.315]. 

8.3.9.2. Structure 

Figure 8.20 illustrates the Strategy implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

8.3.9.3. Participants 

Table 8.25 describes the Strategy participants in the words of Gamma et al. [Gamma95, p.317] and lists the 

corresponding implementations developed in the evaluation. 

 
 

Table 8.25 — Strategy participants 
 

Participant 
 

Description 

 

Implementation 

Strategy  Declares an interface common to all supported 
algorithms. Context uses this interface to call the 
algorithm defined by a ConcreteStrategy. 

StringablePolicy<T> 
 

ConcreteStrategy  Implements the algorithm using the Strategy interface. Each SequencePolicy enumeration 

constant, and each ObjectPolicy 

enumeration constant 

Context  Is configured with a ConcreteStrategy. 

 Maintains a reference to a Strategy object. 

 May define an interface that lets Strategy access its data. 

Any Stringable<T> implementation, 
including sequences as they 
implement the interface 
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Figure 8.20 — Strategy UML Class diagram 

 

8.3.9.4. Implementation 

Defining the Strategy and Context interfaces –– Design choice. The Stringable<T> interface pass itself 

to a concrete strategy of type StringablePolicy<T>, i.e. delegation is used. Strategies as template 

parameters –– Generics with an upper bound can be used in place of templates, where the upper bound 

identifies the strategy functionality. This is analogous to the abstractfactory.PrototypicalRegistry 

functionality that uses an upper bound of StrictCopyable<?> to ensure that the actual type has a copy() 

method. Making Strategy objects optional –– Trivial design choice. This is illustrated in the 

Stringable<T> interface that will apply a default strategy if none is supplied. 

8.3.10. Template Method 

Template Method is a Behavioural pattern with Class scope. The dk.rode.thesis.templatemethod package 

contains the implementation. 

8.3.10.1. Intent 

Define the skeleton of an algorithm in an operation, deferring some steps to sub—classes. Template Method lets 

sub—classes redefine certain steps of an algorithm without changing the algorithm‘s structure [Gamma95, 

p.325]. 
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8.3.10.2. Structure 

Figure 8.21 illustrates the Template Method implementation as an UML Class diagram, where the pattern 

participants can also be identified. The pattern participants are described in the next section.  

 
 

Figure 8.21 — Template Method UML Class diagram 

 

8.3.10.3. Participants 

Table 8.26 describes the Template Method participants in the words of Gamma et al. [Gamma95, p.327] and 

lists the corresponding implementations developed in the evaluation. 

 
 

Table 8.26 — Template Method participants 
 

Participant 
 

Description 

 

Implementation 

AbstractClass  Defines abstract primitive operations that concrete sub—
classes define to implement the steps of an algorithm. 

 Implements a template method defining the skeleton of 
an algorithm. The template method class primitive 
operations as well as operations defined in AbstractClass 
or those of other objects. 

SequenceTemplate<K,E> 
 

ConcreteClass  Implements the primitive operations to carry out sub—
class specific steps of the algorithm. 

ZipSequence,  

FileSequence, NegativeSequence  
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8.3.10.4. Implementation 

Using C++ access control –– Primitive operations are declared as protected methods in the 

SequenceTemplate<K,E> abstract class. All sub—classes and classes in the same package can thus execute 

the primitive operations. Primitive operations that must be implemented are declared abstract, while the 

template methods have to be declared final to ensure that they cannot be overridden. Unlike C++, primitive 

operations overridden by a sub—class can be called in the (super) constructor. This is illustrated in 

SequenceTemplate<K,E>. A potential issue is that Java does not support multiple inheritance. Once the 

abstract class is inherited, no other classes can be inherited. An alternative is to use composition and interface 

implementation as illustrated in the builder.TypedExpressionBuilder<E> class; Builder often rely on 

sub—classing like Template Method. Minimizing primitive operations –– This is a design choice. Naming 

conventions –– Design choice. SequenceTemplate<K,E> utilises meaningful method name prefixes to 

identify primitive operations. Potentially important for reflective invocation. 

8.3.11. Visitor 

Visitor is Behavioural with Object scope. The implementation is located in the dk.rode.thesis.visitor 

package. 

8.3.11.1. Intent 

Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new 

operation without changing the classes of the elements on which it operates [Gamma95, p.331]. 

8.3.11.2. Structure 

Figure 8.22 illustrates the Visitor implementation as an UML Class diagram, where the pattern participants can 

also be identified. The pattern participants are described in the next section.  

 

Notice that there are two separate hierarchies of visitors: sequence value visitors and type visitors. The first 

performs visitation based on the type of values delivered by a sequence, while the latter performs visitation 

based on actual sequence type. 

8.3.11.3. Participants 

Table 8.27 describes the Visitor participants in the words of Gamma et al. [Gamma95, p.334-335] and lists the 

corresponding implementations developed in the evaluation.  
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Figure 8.22 — Visitor UML Class diagram 

 

 
 

Table 8.27 — Visitor participants 
 

Participant 
 

Description 

 

Implementation 

Visitor  Declares a visit operation for each class for 
ConcreteElement in the object structure. The 
operation‘s name and signature identifies the class that 
sends the visit request to the visitor. That lets the 

SequenceVisitor<P> 
 

SequenceTypeVisitor<P>, 
SequenceValueVisitor<P>  
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Table 8.27 — Visitor participants 
 

Participant 
 

Description 

 

Implementation 

visitor determine the concrete class of the element 
being visited. Then the visitor can access the element 
directly through its particular interface. 

ConcreteVisitor  Implements each operation declared by Visitor. Each 
operation implements a fragment of the algorithm 
defined for the corresponding class of object in the 
structure. ConcreteVisitor provides the context for the 
algorithm and stores its local state. The state often 
accumulates results during the traversal of the 
structure. 

TypeVisitor, CountingVisitor, 
LoggingVisitor 

Element  Defines an accept operation that takes a visitor as an 
argument. 

TypeVisitableSequence<E>, 
ValueVisitableSequence<E>  

 
AbstractVisitableSequence<E>  

ConcreteElement  Implements an accept operation that takes a visitor as 
an argument. 

VisitableCompositeSequence, 

VisitableLongSequence, 

VisitableRandomSequence,  
VisitableReversiblePrimeSequence  
 

StringValuedVisitableSequence<E>, 

IntegerValuedVisitableSequence,  

DateValuedVisitableSequence,  
ReflectiveVisitableSequence<E>  

ObjectStructure  Can enumerate its elements. 

 May provide a high—level interface to allow the visitor 
to visit its elements. 

 May either be a composite or a collection such as a list 
or a set. 

SequenceTypeScanner, 
SequenceValueScanner 
 
SimpleScanner 

8.3.11.4. Implementation 

The SequenceValueVisitor<P> cannot overload visitation methods because it performs visitation based on 

type parameters that are erased at runtime. Double—dispatch –– As C++, Java only supports single—dispatch, 

so Visitor is indeed relevant. The ReflectiveVisitableSequence<E> is a decorator that uses reflection and 

naming conventions to avoid a static binding of the actual visitation method. Annotations can also be used as 

illustrated in observer.ObserverManager that uses annotations to determine notification methods. Who is 

responsible for traversing the object structure? –– The traversal of the composite sequence structure is 

made explicit by use of scanners, e.g. the SequenceTypeScanner and SequenceValueScanner types. 

Scanners represent the object structure, but only operate on it. Composite sequences do not traverse their 

children, this is handled by scanners as well. This allows scanners full control over the traversal strategy, for 

example depth—first or breath—first. 
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8.4. Summary 
Below, we list and summarise the key issues from the detailed evaluation of the ―Gang of Four‖ patterns:  

 

 The evaluation shows that practically all functionality described in the Implementation and Sample 

Code elements in the “Gang of Four” patterns can be implemented in Java 6, not just the canonical 

implementations but all functionality—related issues discussed by Gamma et al. in these pattern 

elements. 

 The implementations express “Best Practices” from both Java 6 and design patterns epitomised by 

the ―Gang of Four‖ patterns. 

 

The pattern implementations illustrate that only Adapter with Class scope cannot be done in Java 6. All other 

pattern functionality can be implemented or simulated, but may require more work. Adapter with Class scope 

fails because the pattern abstraction and functionality, and not merely implementation issues, is targeted at 

languages supporting multiple inheritance. In this respect, we conclude that Adapter with Class scope is in fact 

a C++ idiom representing the general Adapter abstraction. Adapter with Object scope is easily implemented in 

Java 6, and dynamic proxies can furthermore be used to simulate multiple inheritance. However, in general, 

there are some problems related to the use of dynamic proxies that may influence pattern behaviour, such as 

testing for object equality. 

  

The implementations express the themes and concepts described by Gamma et al. in a realistic manner, but 

also the “Best Practices” offered by Bloch concerning Java [Bloch01]. All implementation issues discussed by 

Gamma et al. in the Implementation and Sample Code elements in the ―Gang of Four‖ patterns are expressed or 

simulated in the implementations.  
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9. Evaluation Conclusions 
 

High thoughts must have a high language. 

–– Aristophanes 
 

The detailed and comparative evaluations disclose much information concerning individual and collective 

behaviour, including summaries and in—part conclusions where appropriate. This chapter comments on the 

evaluation as a whole. We determine the compliance level of the developed pattern implementations compared 

not only to the functionality examined, but also to the concepts and themes described by Gamma et al. Based 

on the compliance level, we determine how well Java 6 suits the ―Gang of Four‖ patterns from a practical 

perspective. Several pattern implementations are interesting enough to be classified as high—lights of the 

evaluation. These pattern implementations are briefly described and their functionality, applied techniques, and 

used features are put into perspective. Finally, for others to examine and judge the evaluation and its results, 

the evaluation approach must not only be meaningful, but understood. We therefore present an evaluation of 

the evaluation approach, and thus of the evaluation itself, to put the results into perspective.  

9.1. Implementation Compliance 
The evaluation goals from section 5.3 have all been achieved. All ―Gang of Four‖ patterns except Mediator have 

been implemented, while all have been evaluated. All representative pattern functionality described in the 

Implementation and Sample code elements in the ―Gang of Four‖ pattern descriptions have been addressed. 

Only Adapter with Class scope fails because the core pattern abstraction and functionality is directly targeted at 

languages supporting multiple inheritance. All other pattern functionality can be implemented or simulated.  

 

Several patterns include different variants, some close to the canonical implementations offered by Gamma et 

al., while many utilise Java mechanisms alien to C++, such as annotations, dynamic proxies, bounded generics, 

etc. Even though the evaluation quite frequently utilises advanced features, the implementations fundamentally 

rely on OO concepts like types, classes, objects, inheritance, polymorphism, etc., as described by Gamma et al. 

The specific features used are summarised in section 7.1. Furthermore, the developed Meta classes also make 

good use of applying the ―Gang of Four‖ patterns internally. Regardless of mechanisms used, the participants 

and their functionality as described by Gamma et al. are logically named and clearly identifiable in the source 

code. Even more so, the individual participants for each pattern is annotated with annotations describing their 

name and classification down to a level of a specific class, interface, method, or even field. The information is 

also present in the generated JavaDoc, aiding the identification of participants even further.  

 

The implementations not only express the themes and concepts described by Gamma et al., but also the ―Best 

Practices‖ described by Bloch for Java applications. This augments the quality of the pattern implementations. 

We believe that many of the classes produced in the evaluation could be used ―as is‖ in real—life applications. 

However, the Java 6 implementations are generally more dynamic compared to the canonical implementations. 

This may conflict with the warning set forth by Gamma et al., which states that highly parameterised, dynamic 

software may be harder to understand than static software. 
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9.2. Language Features 
Java‘s core language features promote robustness, pattern intent, and reusability, and form the base of all the 

pattern implementations. The evaluation confirms the observations regarding dynamic features and reflection 

made by Norvig and Sullivan examined in chapter 4. We do not claim that Java‘s dynamic and reflective 

capabilities make the ―Gang of Four‖ pattern implementations easier, but combined with core features they 

certainly allow for alternative and more flexible implementations compared to the canonical examples by 

Gamma et al. Creational and Behavioural patterns especially benefit from such usage. Annotations deserve 

special mention because they bridge the gap between compile—time and runtime. They can be used to express 

pattern intent at compile—time as well as runtime, and opens up for many new and interesting ways to express 

pattern functionality. 

 

The language features examined are all present in Java 5 as well. With minor source code modifications, the 

code compiles with JDK 1.5.0_12 without errors14. Conclusions drawn are therefore also applicable to Java 5.  

9.3. High—Lights 
On page 82, table 7.1 emphasises what we consider the representative high—lights discovered during the 

evaluation. The high—lights are illustrated with dark—blue background, for example the Abstract Factory  

Generics entry. The high—lights represent the pattern functionality expressed using the features. They are 

representative because the features may be applied in other patterns as well, and hence we put the pattern and 

feature use in perspective here. The high—lighted features are typically dependent on each other, for example 

the use of generics, type literals, and constructors for Abstract Factory. Below, the pattern  feature 

combinations are summarised in no particular order, and the feature dependencies explained. We believe the 

most realistic use of high—lights are Abstract Factory, Factory Method, Observer, and Singleton 

implementations. Memento, Proxy, and State may be too exotic for general use, but still useful in specialised 

cases. The high—lights are closely related to several of the feature observations described in section 7.1.4. 

9.3.1. Abstract Factory and Factory Method 

The Factory Method implementation shows that it is possible to create a reusable factory that can create precise 

generic types, T, in a type—safe manner based on type literals. The same principle applies to Abstract Factory. 

The reusable factory component is the factorymethod.Factory<T> abstract class. Sub—classing is required 

to acquire the type of T and to specify the constructor to create new instances reflectively. Reflection is only 

used to determine the type of T and to create new instances of T, where after T instances are accessed 

normally. This corresponds to minimal reflective usage as described by Bloch [Bloch01, p.159]. The factory is a 

simple generalisation of the meta.reflect.InstantiableTypeLiteral<T> class. Type literals show how 

patterns can manipulate generic types in a type—safe fashion. This is important as the evaluation indicates a 

prolific use of generics. Section 7.1.2.2 explains the precise usage of type literals, and the Factory<T> class is 

                                                      

 
14

  The results do not apply to Java 1.4. Compiling with Java 1.4 yields 9.400+ errors and 800+ warnings! This is because many 

of the features were introduced as of Java 5, i.e. generics, annotations, enumerations, covariant return types, and varargs. 
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illustrated in listing 7.18 on page 108 as well as listing 7.19. Section 8.1.3 provides the detailed description of 

the Factory Method implementation, while section 8.1.1 provides the description for Abstract Factory. Type 

literals are also used by Prototype, Proxy, Singleton, and Visitor.  

9.3.1.1. Perspective 

Central to many designs are Creational patterns such as Abstract Factory and Factory Method. They provide the 

core business objects the rest of the application depends on; load classes on demand; create other types of 

factories and interrelated hierarchies; and help promote object composition over class—based inheritance 

[Gamma95, p.81]. Creational patterns provide flexibility, but often at the expense of more verbose code and 

little reuse [Gamma95, p.85]. In Java, creating generic product types can also be tricky as this evaluation 

clearly demonstrates. A reusable component such as Factory<T> can remedy many of the pitfalls associated 

with Creational pattern usage. Its intent is also clear by giving it a meaningful, but general, name. While the 

component is open for sub—classing for specialised behaviour, e.g. caching, it can be used ―as is‖ for any (non—

abstract) product type with an applicable constructor, perhaps as a component in another pattern. However, an 

exact type must be known at compile—time so it cannot be used when the type is determined at runtime. Still, 

the Singleton implementation demonstrates how dynamic class loading can be used with type literals to enforce 

generic bounds in certain situations. These issues certainly have an impact on the design and development 

process because the designer can now utilise the knowledge and component(s). We believe the functionality 

provided by Factory<T> is needed and general enough to warrant an API inclusion in the long run, but more 

research and testing is required.  

9.3.2. Memento 

As the evaluation shows, interface usage is practically unavoidable when applying the patterns using Java, but 

interface behaviour must be public. As discovered and explained in section 7.1.4.1, the Memento 

implementation illustrates how the use of friends and interfaces with narrow (public) and wide (private) 

methods in the canonical C++ implementations can be transformed to Java 6 in a type—safe manner using 

guarded types. Iterator and State also use the same C++ features. A Java solution is to declare the otherwise 

private (wide) methods as part of the interface. The methods thus become public, but they must then guard 

access to themselves at runtime. Exception stack traces combined with class literals identify the caller of a 

given context. Appropriate action can then be taken in case the caller is illegal. The caller can be identified at 

the level of a class, static initialiser block, constructor, or method. This is essentially an imitation of friends in 

C++. The cost is potentially error prone runtime access checks enforced by the developer versus compiler 

guaranteed static checks in C++. Callers are represented by the meta.reflect.CallerClass and 

meta.reflect.Caller types and section 7.1.2.1 explains their usage. Memento usage is illustrated in listing 

7.16 and listing 7.26. Section 8.3.6 provides the detailed description of the Memento implementation. Caller 

identification is also used in Singleton and Bridge, but could easily have been applied in other patterns as well. 

9.3.2.1. Perspective 

Interface implementation is paramount in any Java program, not just in pattern implementations. The demand 

that all interface methods are public can have serious consequences for any design. It forces verbose types in 
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the sense that the original type will have to implement all interface functionality publicly. It is not uncommon 

that necessity requires a type to implement an interface expressing functionality that is private by nature. A 

common way to circumvent this is to use private inner classes to implement, or adapt, functionality as is 

illustrated in for example the Observer implementation. However, this does not work when communication is 

required between two different objects as is the case with Memento. Packages can solve the problem locally by 

declaring otherwise private methods package private or even protected, thereby making all other classes in the 

same package ―friends‖. It is plausible this is sufficient for pattern usage if the pattern is applied in an Informal 

way, within the same package and not using interfaces to describe the functionality. If the objects span 

different packages, however, a public type must be used to establish the contract between the objects to 

ensure type safety. Memento shows how type safety can be combined with runtime access checks to protect its 

(otherwise) private state.  

 

The solution promotes type safety for applicable patterns, but may confuse developers because the guarded 

functionality is callable at development—time. Familiar pattern interfaces may suddenly change, but because of 

the prolific use of interfaces in Java, the functionality may actually already be expressed publicly. This is the 

case with the State implementation in this evaluation. The only way to inform users of the intent is to include 

the information in the documentation, JavaDoc or otherwise. This is not unheard of, however, keeping the 

java.lang.UnsupportedOperationException from the Java Collections Framework in mind. While the 

principles utilised are sound and directly available in Java, we doubt its usage in real—life systems unless backed 

by a major player, e.g. Sun. There are too many unknowns and uncertainties connected with its usage, and 

acquisition of stack traces is not exactly cheap in terms of running time. However, caller identification is 

already used by Sun in at least the java.lang.Class and java.lang.ClassLoader classes, using 

proprietary functionality in sun.reflect.Reflection.getClassCaller(int) to fetch the caller. On the 

other hand, combining guarded types with dynamic proxies and annotations offers new and exiting possibilities. 

To us, it seems like an interesting candidate for a reusable pattern component, namely a protection proxy. 

Annotations can document the types and methods guarded, perhaps even declaring the friends, while dynamic 

proxies can enforce the caller checks on behalf of the (real) guarded type. 

9.3.3. Observer 

Establishing pattern functionality in the source code is vital for pattern behaviour, naturally, but also to 

document pattern intent and structure for maintainability and reuse. Annotations bridges the gap between 

compile—time and runtime, because they allow the developer to augment source code in user—defined ways 

that can be processed at compile—time and at runtime, if so specified. The Observer implementation provides a 

reusable component that supports different kinds of observers without coercing a common observer type. 

Coercing a common observer type normally requires extensive adaptation by clients and may violate information 

hiding, analogous to the interface discussion from the previous section. Instead, observer.ObserverManager 

uses the meta.reflect.@Executor annotation to identify both observers and their notification methods. It 

also allows the same type to be notified using several different notification methods. The strategy on how to 

notify a given observer is thus determined by the observer itself, lessening the need for adaptation. This 

technique is also applicable to several other Behavioural patterns, at least to Chain of Responsibility, Command, 
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Mediator, Strategy, and Visitor, but at the cost of (reusable) components issuing reflective dispatch of the 

methods in question. Annotation usage is described and illustrated in section 7.1.2.5. Section 8.3.7 provides the 

detailed description of the Observer implementation.  

9.3.3.1. Perspective 

It is worth noting that in our experience, some developers refrain from using annotations, and perhaps more so 

reflection in general. Primary reasons are missing type safety and performance, but also lack of familiarity. 

However, several well—known frameworks support annotations, such as EJB3, Hibernate, JBoss Seam, Google 

Guice, etc., and annotation usage seems to continue to spread. The use of JavaBeans has always relied on 

naming conventions reminiscent of annotated method usage. As of Java 1.4 reflective access is only twice as 

slow as normal access [Bloch01, p.158] – which is actually pretty decent – but will still slow any application 

considerably down if used blindly, for example in critical loops. For design patterns, this is usually not an issue. 

Type safety is a big issue, however, especially since generics have been introduced to heighten type safety. 

However, annotations need not be used runtime at all. Nonetheless, in our view, wise (and moderate) use of 

runtime annotations combined with reflection certainly has its uses in the ―Gang of Four‖ patterns, and we think 

the evaluation exhibits this.  

 

With proper use of annotations, code inspection becomes much easier. Consider being handed a Java project 

with tens of thousands lines of code and being able to generate a report on, say, all applications of the Observer 

and Singleton patterns, including places where the standard Singleton conventions are not used. Singleton shows 

how the singleton.@Singleton annotation is also used to identify Singleton types and behaviour at runtime, 

but with Sun‘s Annotation Processing Tool (APT) annotation information can also be utilised at compile—time. 

The Observer implementation uses annotations in a similar fashion. Report—generation is truly an improvement 

over ―traditional‖ scattered documentation, especially because annotations are maintained in conjunction with 

the source code itself. Developers knowing the ―Gang of Four‖ patterns will quickly be able to understand the 

reasoning behind the solution, because they understand the reasoning behind the patterns and have a complete 

list of the concrete pattern applications generated by annotation processing. If the annotations furthermore 

express actual pattern functionality, the pattern implementations become very compact. 

 

The evaluation illustrates how simple annotation usage can identify pattern participants and simple 

functionality, such as identifying notification methods in Observer. Ernst proposes an extension to Java‘s 

annotation system (JSR308) that permits annotations to appear on any use of a type as opposed to Java 6 where 

annotations are only applicable to declarations of packages, types, methods, fields, and local variables as well 

as method parameters [Ernst07, p.1,3]. Ernst suggests usage of annotations such as @NotNull and @ReadOnly 

to create custom type qualifiers that provide extra information about a type or a variable, such as String s = 

(@NonNull String)o and class UnmodifiableList<T> implements @ReadOnly List<@ReadOnly 

T> [Ernst07, p.4]. The focus is on static usage, but they can still be used like standard Java 6 annotations 

because of backward compatibility. Hence, the annotations may be retained at runtime and used reflectively 

[Ernst07, p.17]. This form of annotations can be used to express pattern participants, properties, and 

relationships even more detailed. This could be useful as the interactions between participants can be described 
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in detail, for example annotations describing receiver behaviour on methods. For example, the Proxy 

implementation in this evaluation allows sharing of meta.model.Sequence<E> instances via the Handle/Body 

idiom (dynamic proxies), where a copy of the shared sequence will be created once a mutator method is 

invoked. This is described in section 7.1.2.4. Mutator methods are specified via their names and fetched 

reflectively, which is unsafe and error prone. A @ReadOnly, or rather a @Mutator, annotation could specify 

this functionality directly in a type—safe fashion on the relevant methods, as in public E current() 

@ReadOnly {..} and public E next @Mutator {..}. The use of such low—level annotations combined 

with dynamic proxies may perhaps allow dynamic implementation of some of the ―Gang of Four‖ patterns, 

particular Behavioural ones. How much this type of annotations will offer compared to the standard use is 

questionable and would require extensive research to determine. 

 

As a final comment on annotation usage in patterns, note that several CASE tools already have support for the 

―Gang of Four‖ patterns, for example Rational Rose. The NetBeans IDE used as secondary IDE in this thesis has 

tool support to apply all ―Gang of Four‖ patterns, but with the improved modularity offered by annotations, 

tooling can be much improved. This goes both ways, i.e. code—generation and reverse engineering. Common 

standards might even evolve in form of annotations used to describe the individual ―Gang of Four‖ patterns. 

9.3.4. Proxy and State 

Java has built—in support for the Proxy pattern via dynamic proxies. Dynamic proxies depend heavily on 

reflection, especially reflectively invoking methods. Gamma et al. describe four different types of proxies, 

namely remote proxies, virtual proxies, protection proxies, and smart references [Gamma95, p.208-209]. All 

can be implemented using dynamic proxies, and the evaluation provides examples of all but remote proxies, for 

example Handle/Body idiom as already described (smart reference). The State implementation illustrates how 

dynamic proxies can be used to simulate dynamic inheritance by changing the target of method invocations at 

runtime. By changing the target object, the implementation effectively changes. The implementations need not 

even have the same type, only matching method signatures. Section 7.1.2.4 explains the general usage of 

dynamic proxies in the pattern implementations. Practical application is illustrated in listing 7.21 on page 112, 

where Prototype uses Proxy to make objects prototypical. Section 8.2.7 and 8.3.8 provide the detailed 

descriptions of the Proxy and State implementations, respectively. Section 8.1.4 provides the detailed 

implementation for Prototype, illustrating the use of Proxy. 

9.3.4.1. Perspective 

Dynamic proxies are not merely of academic interest. Annotations are runtime represented by dynamic proxies, 

for example. Annotation and dynamic proxy collaboration is a very interesting area to pursue concerning the 

pattern functionality just described in section 9.3.3.1. The evaluation shows that dynamic proxies can be used 

to implement much of the alternative pattern implementations described by Gamma et al. However, usage may 

cause unforeseen consequences and change the implementation of the pattern participants considerably. 

Behavioural patterns can benefit from dynamic proxy usage because it allows the behaviour to change at 

runtime. This is clearly illustrated in the State implementation. Structural patterns such as Adapter and 

Decorator can also benefit from dynamic proxies.  
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Several of the properties associated with dynamic proxies can make them ill suited for pattern implementations. 

In general, patterns that rely on inheritance as opposed to interface implementation (composition) could be 

problematic, for example Singleton and Template Method. As with any reflective feature, dynamic proxies 

should be used with care. They can have tremendous impact on the pattern and application functionality in ways 

not expected, not even considering the increase in code required to make them work, which may clutter 

otherwise concise implementations. Such code can be hard to maintain and make pattern implementations 

harder to understand. This contradicts traditional OO lore and especially forces like Efficiency, Reliability, and 

Testability as described by Buschmann et al. in section 3.4. Refactoring and component usage as for example 

the meta packages in this evaluation can help. Consider as part of an API a Creational pattern such as Abstract 

Factory, Builder, or Factory Method that produces dynamic proxies instead of concrete types (classes and/or 

interfaces). Creational patterns are often pivotal in any design because they have the responsibility of creating 

new objects on demand. Dynamic proxies will thus proliferate throughout the application, probably without the 

client knowing. They will be used in composites, iterators, commands, decorators, etc. Problems related to 

performance, marshalling, serialization, object identities, testing on and casting to exact classes, etc., could 

easily arise. 

9.3.5. Singleton 

The evaluation demonstrates two important, and as far as we know, novel issues regarding the Singleton pattern 

implemented in Java: 1) As of Java 5, Java has built—in support for Singleton semantics; and 2) sub—classing is 

possible using guarded types.  

 

The Singleton—as—Single—Constant idiom defined in this thesis illustrates Java‘s support for the Singleton 

pattern. By using enumerations as the mean to enforce Singleton behaviour, it is guaranteed that the Singleton 

type is non—instantiable and has a single global point of access – the singleton constant. This corresponds to the 

Singleton requirements set forth by Gamma et al. All the desirable traits of enumerations will inherently be 

expressed in the Singleton type, such as automatic instantiation; serializable; non—cloneable; known at 

compile—time; etc. On the other hand, the enumeration limitations will also be expressed. The Singleton 

constant is accessed directly, without the use of method indirection; arguments cannot be supplied at 

construction time; and it cannot be sub—classed. Section 7.1.1.4 explains the general usage of enumerations in 

the pattern implementations, and the Singleton—as—Single—Constant idiom is illustrated in listing 7.9 on page 

94. Section 8.1.5 provides the detailed description of the Singleton implementation. 

 

Like Memento, sub—classing of Singleton requires the singleton type to be a guarded type that validates the 

sub—class caller. Combining this with hiding of static methods, the evaluation shows that singleton inheritance is 

practically feasible, but must be applied in an Informal way for each applicable singleton type. The same 

restrictions apply as for Memento, though the Singleton sub—class constructor is already declared protected. A 

certain level of trust is still required, though. Callers are represented by the meta.reflect.CallerClass 

and meta.reflect.Caller types and section 7.1.2.1 explains their usage. Singleton sub—classing is 

illustrated in listing 7.15 on page 104. 
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9.3.5.1. Perspective 

In the discussion at [PPR, p.JavaSingleton], it is suggested that Java should support Singleton behaviour directly 

via a single keyword, i.e. that a class can declare it is a singleton like public single class 

SingletonClass. The use of a keyword clearly states the pattern intent, but Java 6 supports Singleton 

behaviour via enumerations and can use annotations to clarify the pattern intent. This is illustrated in the 

evaluation via the singleton.@Singleton annotation. More so, if annotation usage where expanded as 

discussed in section 9.3.3.1, @Singleton could be enforced wherever the Singleton type is used. On the other 

hand, since enumerations can be utilised, syntactic sugar in form of a single keyword seems feasible similar to 

arrays and varargs usage. 

 

An interesting idea is to combine guarded types and annotations. Annotations can be used to specify ―friends‖, 

particularly if usage of methods can also be annotated.   

9.4. Evaluation Approach 
To put the experiments and evaluation in perspective, we give a short evaluation of the evaluation approach 

itself. While the intent of the evaluation approach is to address all pattern functionality in specific elements, it 

is loosely formulated. Especially the comparative evaluation. This leaves room for interpretation, but it may also 

collide with the premise that the results can be verified. This is reminiscent of using pattern descriptions. 

Concrete issues include the functionality to examine, i.e. all information in the Implementation and Sample 

Code elements, the semantics of the language chosen as the catalyst, and the format of the detailed evaluation. 

This leaves many variables to the discretion of the evaluator. As the functionality described by Gamma et al. is 

written in natural language, it is up for interpretation. The features chosen can be an arbitrary sub—set of the 

language used. How verbose or exacting the written evaluation is is also up to the evaluator. Ergo, while the 

evaluation approach tries to structure the evaluation, it inherently reflects the lingual form of the patterns it 

investigates. Even though conclusions can be drawn, they will still be subjective. For example, the choice of 

language features to investigate and how well the evaluator knows these features will in effect determine the 

output of the evaluation. This is one of the reasons why we changed focus in this thesis from using several 

languages on a few patterns to using a single language on all the ―Gang of Four‖ patterns: performing an in—

depth evaluation using a language with little to no practical experience does not make sense. Language 

knowledge and experience is paramount, even more so than experience with the ―Gang of Four‖ patterns. 

Before this evaluation, there were several patterns we had never implemented ―as is‖, for example Builder, 

Chain of Responsibility, Interpreter, and Visitor. It is hard to make concrete, but we argue that the 

implementations at least express the pattern qualities associated with the Implementation and Sample Code 

elements as listed in table 3.2 on page 41, i.e. Composibility, Equilibrium, Generativity, and Openness. This is 

because we adhere to the ―Gang of Four‖ pattern descriptions and to ―Best Practices‖ in Java as described by 

Bloch [Bloch01].  

 

Amidst conducting the implementations and evaluations, we realised that the Sample Code element really does 

not provide new information compared to what is written in the Implementation element; it merely provides 
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C++ (and Smalltalk) examples of the topics discussed in the Implementation element. Instead, the Applicability 

and Consequences elements seem better candidates to include in future evaluations for additional information. 

The patterns describe the interesting forces in the Consequences element that truly defines the pattern 

behaviour as in for example Strategy, and Visitor even provides source code in the element. Another example is 

Proxy that describes the different kind of proxies in the Applicability element, but only shows examples of how 

to implement few of these in the Implementation and Sample Code elements. The Consequences element 

further describes interesting proxy features such as copy—on—write that are not illustrated. Still, as the 

evaluation shows, it is impossible not to include functionality from (almost all) other elements. The point is that 

the patterns describe more than the source code, and the source code only makes sense within the pattern 

context. However, performing a structural evaluation based on these suggested elements as well may be 

difficult because they focus more on natural language and abstractions than on programming languages and 

practical examples. The evaluation will not become less subjective, which is illustrated by the pattern qualities 

we identified and associated with the Abstraction pattern element as listed in table 3.2.  

 

A question that arises from an evaluation of this kind is whether the evaluation investigates the ―Gang of Four‖ 

patterns using a given language, or if it evaluates the language by merely using the ―Gang of Four‖ patterns as 

the showcase. The evaluation approach tries to set the bar high and effectively asks how well suited a given 

language is to express the ―Gang of Four‖ pattern abstractions and qualities, albeit only using certain elements 

from the pattern descriptions. The ―Gang of Four‖ pattern concepts, themes, and functionality are the focus of 

attention because the language features are used to express them. Nonetheless, the evaluation is undeniably 

also a testament to the language used, illustrated especially by the comparative evaluation and the high—lights. 

Because of the extensive focus on implementation related pattern elements, the investigation also becomes very 

language specific and technical. The Implementation and Sample Code elements primarily use C++ to illustrate 

pattern functionality, while dynamic languages, e.g. Smalltalk and Self, are used in the Meta—information in 

these elements to discuss alternative implementations. Little remarks by Gamma et al. regarding (not 

illustrated) pattern functionality cause verbose (Java 6) implementations and associated evaluations that have 

to analyse the solution. This is for example the case with the State implementation using dynamic proxies to 

simulate dynamic inheritance: a paragraph of eight lines [Gamma95, p.309] yields 1000+ lines of code overall 

(including documentation and blank lines). The evaluation shows that Java 6 can address practically all issues 

discussed in the examined elements. In that context, Java 6 offers the designer a ―better toolbox‖ to express 

the pattern functionality. Of course, in real—life applications there are other considerations to make and forces 

to consider, for example Efficiency and Reliability as discussed in section 3.4 on page 38. C++ is faster compared 

to Java 6, and reflection is more error prone than compiled code. Hence, the evaluation does not conclude that 

Java 6 should be preferred in all contexts. It merely illustrates how well suited the language, e.g. Java 6, is to 

express the ―Gang of Four‖ abstractions. The rest is up the designer. However, it is important to remember that 

only parts of the pattern descriptions are investigated. Many of the patterns could justify having a small book 

dedicated to them, so could many of the Java 6 features. In fact, many of them do. 

 

Another question is how the specific set of features is chosen. The features listed in table 7.1 are selected 

based on language experience, but also because of prior knowledge regarding the ―Gang of Four‖ patterns. 
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Other features could have been primitive types, assertions, and more focused analysis of polymorphism. Had 

reflection not been chosen, the evaluation outcome would have been less impressive concerning supported 

―Gang of Four‖ functionality. Still, the evaluation clearly expresses the features evaluated, thereby establishing 

the language context within to judge the evaluation outcome. As table 7.1 illustrates, some patterns utilise 

many features, while others utilise fewer. This is a testament to pattern granularity and abstraction as in Facade 

compared to Singleton, but also indicates that it is almost impossible implementation—wise not to favour 

patterns supporting multiple (and fun) features. 

 

The division between detailed and comparative evaluation is easier to express in structural literary form than it 

is to conduct in practice. The process of implementing the patterns in effect took the form of Iterative 

development as described in chapter 2, where discoveries in one pattern would lead to the evolution of other 

similar patterns and so forth. Because of different pattern abstractions and relationships, the time spent in the 

different implementations has not been identical. Nonetheless, since all implementations express the pattern 

functionality, we believe they express the qualities and forces described by Gamma et al. as well. Including the 

Consequences element in future evaluations would merit a better judgement of this, however. 

 

Conclusion –– The evaluation approach offers a way to investigate and judge how well a given language can 

express the ―Gang of Four‖ functionality expressed in the Implementation and Sample Code elements, but it 

does not draw any conclusions as to whether the language catalyst should be used in a given scenario. This is – of 

course – left to the discretion of the designer. The conclusions on the practical features used are subjective, but 

can be verified using a similar evaluation set—up. The evaluation serves as a tool from which practical 

experience can be drawn, but it is too loosely formulated to be considered a methodology.  
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10. Conclusion 
 

A question that sometimes drives me hazy:  

am I or are the others crazy? 

–– Albert Einstein 

 

The goals of this thesis have all been reached. We have presented the basic theory necessary to understand the 

―Gang of Four‖ patterns with a practical approach focusing on Java 6. We have defined an evaluation approach 

on how to evaluate the ―Gang of Four‖ patterns using a language as the catalyst. Using this approach, we have 

implemented the ―Gang of Four‖ design patterns in Java 6, and performed a detailed and a comparative 

evaluation from the perspective of a practicing designer and/or developer. The evaluations and the conclusions 

have been presented in this thesis. A short evaluation of the defined evaluation approach has also been offered. 

This chapter presents the overall thesis results and conclusions from our established perspective. We outline 

ideas for future work, and end this thesis with a few final remarks regarding the project and work performed.  

10.1. Perspective 
This thesis is a report on what has been achieved in this project. Its approach is experimental and practical, 

explanatory in nature. This is because we view the use of design patterns as a practical discipline based on the 

inclinations of the user. It is all about choices. The choice to use patterns as an aid in the design process, the 

choice of pattern to use for a given context, the choice of programming language. Patterns are all about 

interpretation. Interpretation of the pattern description, of the sample code, and ultimately of the pattern 

functionality in order to apply the pattern. Patterns are all about learning from experience. Utilising the 

experience of others prevents the need to reinvent the wheel. However, because choices and interpretations 

must be made, the use of patterns is also a learning process that augments the user‘s experience. While a design 

pattern is recorded by its author, the success and eventual applicability is based on the choices, interpretations, 

and experiences made by the user. The evaluation presented in this thesis is no different. Many choices and 

decisions have been made during the project, and a lot of valuable experience has been gained from the in—

depth work with the ―Gang of Four‖ patterns and Java 6. Several important issues related to their practical 

application have been learned. This thesis has strengthened our belief that the ―Gang of Four‖ patterns can be a 

valuable aid in the design process and that they are applicable using languages other than C++ and Smalltalk. By 

using Java 6 as the programming language we have illustrated that the patterns can be implemented in a variety 

of ways that might differ greatly from the canonical ―Gang of Four‖ implementations, including as far as we can 

tell novel approaches in several pattern implementations, while still expressing the pattern intent, qualities, 

and forces. However, the high level of abstraction combined with practical experience is a key issue as to why 

we do not believe built—in language support is possible for design patterns in general.  

10.2. Results 
As stated in the initial goals, the primary objective of this Master‘s Thesis is for the undersigned to obtain a 

Master‘s Degree in Computer Science. This thesis represents a project with a formal workload of 30 ECTS, and it 
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presents the work performed during the project. To obtain the degree, the project and thesis must be approved 

after an oral examination based on this thesis. We feel the work performed has been educational; we perceive it 

as comprehensive and satisfactory, rigorously presented, thereby warranting such an approval. The introduction 

defined a set of sub—goals, I–IV, for the work to be performed during the project. The goals have all been 

achieved and presented in this thesis:  

 

I. Theory and Background –– We have performed extensive research and presented theory and 

background related to OO development and patterns relevant to the implementation and evaluation, 

but with focus on practical application and Java 6 usage. We have explained how design patterns can 

be used as a practical tool in the development process regardless of the OO method used, and 

identified the OO concepts and themes relevant for the ―Gang of Four‖ patterns, including their 

relation to Java 6. We have introduced the pattern theory on which the ―Gang of Four‖ patterns are 

founded, and provided numerous examples to illustrate OO and pattern theory from a more practical 

and Java related view. We have presented the ―Gang of Four‖ pattern system and established an 

informal classification of their relationships. We have examined and related several studies on how 

language features can influence the ―Gang of Four‖ design patterns. The studies conclude that dynamic 

features and reflection can aid the pattern implementation, while static features can promote 

Structural pattern componentizations. We have shown this is a fine match to Java 6 with its mixture of 

static and dynamic features. We believe the extensive focus on practical aspects and Java 6 with 

regards to the theory and the ―Gang of Four‖ patterns provides consistency throughout this thesis.  

 

II. Evaluation Approach –– We have defined a simple, but structured approach used to conduct the 

evaluation. The approach is general enough for reuse in similar evaluations, using other languages as 

catalysts. By specifically utilising pattern elements described by Gamma et al., the approach is closely 

tied to the ―Gang of Four‖ patterns, but it makes it easier to verify the otherwise subjective results. 

 

III. Implementation –– We have implemented the ―Gang of Four‖ patterns in Java 6 within the realm of 

the evaluation approach, fully documented in JavaDoc, with clearly identifiable pattern participants. 

Several reusable Meta classes help provide realistic pattern functionality. We have been methodical and 

thorough in merging ―Best Practices‖ from the ―Gang of Four‖ design patterns with that of Java. The 

quality of the implementations is therefore high and adhere to the concepts and themes defined by 

Gamma et al., but also to Java—specific issues described by Bloch [Bloch01].  

 

IV. Evaluation –– We have performed a comparative as well as detailed evaluation of the pattern 

implementations using the defined approach. The detailed evaluation provides comprehensive UML 

class diagrams, description of pattern participants, but most importantly illustrates how practically all 

functionality described in the relevant ―Gang of Four‖ pattern elements can be implemented in Java 6. 

The comparative evaluation provides an in—depth investigation on how Java 6 features and mechanisms 

are applied across all patterns to identify common traits and relationships. Based on the evaluations, 

we have identified the following high—lights: 
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 The Singleton—as—Single—Constant idiom explains how a single enumeration constant can express 

the Singleton qualities and forces described by Gamma et al.  

 Reflection and runtime—retained annotations provide very flexible pattern implementations 

exhibiting behaviour that normally is ascribed to dynamic languages only. Creational and especially 

Behavioural patterns can benefit from the usage, for example Observer by annotating the 

notification methods without requiring a common observer interface.  

 Type literals to enforce type safety for generic types and to act as reusable factories in Creational 

patterns such as Abstract Factory and Factory Method. 

 Dynamic proxies can be utilised in especially Structural patterns such as Proxy and Bridge, but also 

to simulate dynamic inheritance as illustrated in the State implementation.  

 Guarded types allow runtime protection of interface behaviour that has to be declared public in 

Java for compile—time type safety. This facilitates Singleton inheritance, and at least the 

Memento, and possibly State, implementations. 

 

We have also evaluated the evaluation approach and determined it to be useful, albeit found it wanting 

in certain respects, and recommended improvements to make future evaluations even more thorough.  

 

The contributions made by this thesis are: 

 

 We have shown that practically all pattern functionality described by Gamma et al. in the 

Implementation and Sample Code elements can be implemented in Java 6. While Java 6 does not 

support several of the described language mechanisms, alternative means exist and can be utilised 

successfully. The pattern implementations illustrate such usage and this thesis explains it. This is a 

strong indication that Java is well suited to express all pattern abstractions described by Gamma et al.  

 We have defined a simple evaluation approach that can be utilised by others to determine the level of 

compliance between the ―Gang of Four‖ patterns and a language catalyst. 

 We have presented what we believe are novel approaches on how to implement several of the ―Gang of 

Four‖ patterns in Java 6, in particular Singleton, Abstract Factory, Factory Method, Memento, Observer, 

Proxy, and State (high—lights). Many of the principles applied are applicable for other patterns as well, 

such as type literals, guarded types, dynamic proxies, and annotation usage in particular. 

 We have linked the themes described by Gamma et al. to practical concepts expressed in Java 6. 

10.3. Future Work 
Before a few final remarks, we list possible future studies related to the work presented in this thesis.  

 

1. Adjust the evaluation approach to include at least the Consequences element in favour Sample Code for 

a more thorough evaluation, because Sample Code in general did not provide additional information. 
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2. Provide in—depth studies of the presented high—lights, including studies on possible language support 

for described patterns. For example, what will be the cost of adding a singleton keyword to Java to 

express Singleton functionality as when implemented using the Singleton—as—Single—Constant idiom? 

Are there patterns or language idioms that could be promoted to language features? Is it worth adding 

generic factories to the Java API? Is dynamic proxy usage viable in real—life systems? Annotations? 

 

3. Describe new ―participants‖ or functionality expressed in the evaluation. This includes Command 

spawning new commands, generic factories, Singleton—as—Single—Constant idiom, guarded types, etc.  

 

4. Using different language catalysts for evaluation. It could be truly interesting to apply the evaluation 

approach using a prototype—based language and corresponding OO taxonomy. This is no small task as 

the concepts and themes described by Gamma et al. are clearly targeted at class—based languages. 

 

5. Apply the evaluation approach using different design pattern systems, for example the ―POSA‖ 

patterns. This will require adaptation to the pattern format used, but is certainly manageable. A bigger 

task is perhaps to ensure a consistent understanding of the OO concepts and themes. It could be 

interesting to see if the features and techniques applied in this evaluation are applicable elsewhere.  

 

6. One of the reasons for choosing Java 6 over Java 5 was the support for annotation processing via Sun‘s 

Annotation Processing Tool (APT). The original idea was to prime APT with a handler that would 

traverse the source code and gather information about patterns and participants, thereby generating a 

summary of pattern usage. Perhaps even compiling code that could be utilised at runtime to enhance 

pattern support akin to Meta Data expressed with classes. This could also aid the documentation. As 

explained, this could be a very interesting tool to implement, with many exiting possibilities. 

 

7. Target the implementations for reusable components. The evaluation shows that Creational and 

especially Behavioural patterns are good candidates for componentization.  

 

8. For completeness, implement Mediator and evaluate the secondary objective of this thesis, to establish 

if this thesis could be helpful to others pondering with the ―Gang of Four‖ patterns and language issues. 

This could be a practical survey among co—workers, discussion group, or lectures on the findings, etc. 

10.4. Final Remarks 
Our initial goals have been reached, though we did not accomplish all we set out to do, in part because we 

changed focus half way through corresponding to the work description available as [Rode07a]. We believe others 

may benefit from the experiences and results presented in this thesis, perhaps using it actively and practically. 

It has been educational to write, and we hope it will be educational to read, thus causing developers and others 

to think more actively about design patterns. 



EVALUATING SOFTWARE DESIGN PATTERNS MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 193 of 197 

Bibliography 
 

There is no quote for the bibliography. 

–– Maz Spork 
 

References post fixed with a date indicates the date they were retrieved, in the format dd.mm.yyyy. Note that 

the bibliography has been updated to reflect thesis changes made after grading. 
 
 
[Alexander77] A Pattern Language – Towns, Buildings, Construction 
  Christopher Alexander 
  1977; Oxford University Press; ISBN 0195019199 
 
[Alexander79] The Timeless Way of Building 
  Christopher Alexander 
  1979; Oxford University Press; ISBN 0195024028 
 
[Alexander05a] Generative Codes – The Path to Building Welcoming, Beautiful, Sustainable Neighborhoods 
  Christopher Alexander, Randy Schmidt, Maggie Moore Alexander, Brian Hanson, and Michael Mehaffy 
  2005; DRAFT, Version 17;  

http://www.livingneighborhoods.org/library/generativecodesv10.pdf (29.06.2006) 
 

[Alexander05b] The Relationships Between Pattern Languages, Sequences, and Generative Codes 
  Christopher Alexander 

2005; http://www.livingneighborhoods.org/ht-0/patternlanguages.htm (20.05.2007) 
 
[Appleton] Patterns for Java and Distributed Computing 
  Brad Appleton 
  http://www.cmcrossroads.com/bradapp/javapats.html (26.06.2006) 
 
[Appleton97] On the Nature of The Nature of Order 
  Brad Appleton 
  1997; http://www.cmcrossroads.com/bradapp/docs/NoNoO.html (26.06.2006) 
 
[Appleton00] Patterns and Software – Essential Concepts and Terminology 
  Brad Appleton 
  2000; http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html (26.06.2006) 
 
[Armstrong06] The Quarks of Object—Oriented Development  
  Deborah J. Armstrong 
  2006; Communications of the ACM, Volume 49, No 2, pages 123-128; ACM Press 
 
[Arnout06] Pattern componentization: The Factory example 

Karine Arnout and Bertrand Meyer 
2006; Innovations in Systems and Software Technology (a NASA journal); 
http://se.ethz.ch/~meyer/publications/nasa/factory.pdf (30.04.2007) 

 
[AspectJ]  AspectJ Web Site 
  http://www.eclipse.org/aspectj/ (21.05.2007) 
 
[Bacon]  The “Double—Checked Locking is Broken” Declaration 

David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr, Doug Lea, Tom May, Jan—Willem Maessen, 
Jeremy Manson, John D. Mitchell, Kelvin Nilsen, Bill Pugh, and Emin Gun Sirer 

  http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html (13.01.2009) 
 
[Baroni03] Design Patterns Formalization 

Aline Lúcia Baroni, Yann-Gaël Guéhéneuc, and Hervé Albin-Amiot 
  2003; Technical Report 03/03/INFO; Computer Science Department, École des Mines de Nantes; 
  http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeling+June03.doc.pdf 

(17.05.2007) 
 
[Beck87]  Using Pattern Languages for Object—Oriented Programs 
  Kent Beck and Ward Cunningham 
  1987; Technical Report CR-87-43, Presented at OOPSLA-87; 

Abstract at http://c2.com/doc/oopsla87.html (20.06.2006) 

http://www.livingneighborhoods.org/library/generativecodesv10.pdf
http://www.livingneighborhoods.org/ht-0/patternlanguages.htm
http://www.cmcrossroads.com/bradapp/javapats.html
http://www.cmcrossroads.com/bradapp/docs/NoNoO.html
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://www.eclipse.org/aspectj/
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.iro.umontreal.ca/~ptidej/Publications/Documents/Research+report+Metamodeling+June03.doc.pdf
http://c2.com/doc/oopsla87.html


EVALUATING SOFTWARE DESIGN PATTERNS MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 194 of 197 

[Bloch01]  Effective Java – Programming Language Guide 
  Joshua Bloch 
  2001; Prentice Hall; ISBN 0201310058 
 
[Bloch08]  Effective Java – Second Edition 
  Joshua Bloch 
  2008; 2nd Edition; Prentice Hall; ISBN 0321356683 
 
[Borchers99] Pattern Languages in Human—Computer Interaction – Suite Overview 
  Jan O. Borchers 
  1999; http://www.hcipatterns.org/tiki-download_file.php?fileId=10 (25.06.2006) 
 
[Bracha04] Generics in the Java Programming Language 

Gilad Bracha 
2004; http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf (19.10.2006) 
 

[Buschmann96] Pattern—Oriented Software Architecture – A System of Patterns, Volume 1 
  Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal 
  1996; John Wiley & Sons, Inc.; ISBN 0471958697 
 
[Brown98] AntiPatterns – Refactoring Software, Architectures, and Projects in Crisis  

William J. Brown, Raphael C. Malveau, Hays W. McCormick, and Thomas J. Mowbray  
1998; John Wiley & Sons, Inc.; ISBN 0471197130 

 
[Cockburn01] Writing Effective Use Cases 
  Alistair Cockburn 
  2001; Addison—Wesley; ISBN 0201702258 
 
[Coplien]  Software Design Patterns: Common Questions and Answers 

James O. Coplien 
ftp://st.cs.uiuc.edu/pub/patterns/papers/PatQandA.ps (20.05.2007) 

 
[Coplien91] Advanced C++ Programming Styles and Idioms 
  James O. Coplien 
  1991; Addison—Wesley; ISBN 0201548550 
 
[Dominus02] “Design Patterns” Aren't 
  Mark Jason Dominus 
  2002; http://perl.plover.com/yak/design (25.06.2006) 
   
[DeMichiel87] The Common Lisp Object System: An Overview 
  Linda G. DeMichiel and Richard P. Gabriel 
  1987; Lucid, Inc.; http://www.dreamsongs.com/NewFiles/ECOOP.pdf (01.10.2006) 
 
[Eckel03]  Thinking in Patterns – Problem—Solving Techniques using Java, Revision 0.9 

Bruce Eckel 
2003; http://www.mindviewinc.com/downloads/TIPatterns-0.9.zip (20.06.2006) 

 
[Eden98]  Giving “The Quality” A Name 
  Amnon H. Eden 
  1998; http://www.eden-study.org/articles/1998/giving_the_quality_a_name.pdf (20.05.2007) 

 
[Eden02]  A Theory of Object—Oriented Design 
  Amnon H. Eden 
  2002; Information Systems Frontiers 4:4, pages 379–391; 

http://www.eden-study.org/articles/2002/isf4(4).pdf (18.02.2007) 
   
[Eden04]  LePUS2 – Updates and Challenges 
  Amnon H. Eden 
  2004; http://www.eden-study.org/articles/2004/Lepus2-updates-challenges.pdf (21.06.2006) 
 
[Ernst07]  Annotations on Java types – JSR 308 working document 

Michael D. Ernst 
2007; http://groups.csail.mit.edu/pag/javari/java-annotation-design.pdf (16.08.2007)  

 
[Fowler97] Analysis Patterns – Reusable Object Models 
  Martin Fowler 
  1997; Addison—Wesley; ISBN 0201895420 
 
 

http://www.hcipatterns.org/tiki-download_file.php?fileId=10
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
ftp://st.cs.uiuc.edu/pub/patterns/papers/PatQandA.ps
http://perl.plover.com/yak/design/
http://www.dreamsongs.com/NewFiles/ECOOP.pdf
http://www.mindviewinc.com/downloads/TIPatterns-0.9.zip
http://www.eden-study.org/articles/1998/giving_the_quality_a_name.pdf
http://www.eden-study.org/articles/2002/isf4(4).pdf
http://www.eden-study.org/articles/2004/Lepus2-updates-challenges.pdf
http://groups.csail.mit.edu/pag/javari/java-annotation-design.pdf


EVALUATING SOFTWARE DESIGN PATTERNS MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 195 of 197 

[Fowler03] Patterns of Enterprise Application Architecture 
  Martin Fowler 
  2003; Addison—Wesley; ISBN 0321127420 
 
[Fowler04] Is Design Dead? 
  Martin Fowler 
  2004; http://www.martinfowler.com/articles/designDead.html (22.06.2006) 
 
[Fowler05] CallSuper 
  Martin Fowler 
  2005; http://www.martinfowler.com/bliki/CallSuper.html (16.05.2007) 
 
[Fowler06] Writing Software Patterns 
  Martin Fowler 
  2006; http://www.martinfowler.com/articles/writingPatterns.html (15.05.2007) 
 
[Gafter06] Super Type Tokens 
  Neal Gafter 
  2006; http://gafter.blogspot.com/2006/12/super-type-tokens.html (16.05.2007) 
 
[Gamma95] Design Patterns – Elements of Reusable Object—Oriented Software 
  Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides 
  1995; Addison—Wesley Longman, Inc.; ISBN 0201633612 
 
[Gosling05] The Java Language Specification 

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha 
2005; 3rd Edition; Addison—Wesley; ISBN 0321246780;  
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf (09.10.2006) 

 
[Graham02] Revenge of the Nerds 
  Paul Graham 
  2002; http://www.paulgraham.com/icad.html (27.07.2006) 
 
[Grand98]  Patterns in Java – A Catalog of Reusable Design Patterns Illustrated with UML, Volume 1 
  Mark Grand 
  1998; John Wiley & Sons, Inc.; ISBN 0471258393  
   
[Grand99]  Patterns in Java – A Catalog of Reusable Design Patterns Illustrated with UML, Volume 2 
  Mark Grand 
  1999; John Wiley & Sons, Inc.; ISBN 0471258415 
 
[Hacknot07] Invasion Of The Dynamic Language Weenies  
  www.hacknot.info 

2007; http://www.hacknot.info/hacknot/action/showPrintableEntry?eid=93 (18.05.2007) 
 
[Halloway07] Design Patterns are Code Smells 

Stuart Dabbs Halloway 
2007; http://relevancellc.com/2007/5/17/design-patterns-are-code-smells.html (04.06.2007)  

 
[Hannemann02] Design Pattern Implementation in Java and AspectJ 
  Jan Hannemann and Gregor Kiczales 

2002; Proceedings of the 17th Annual ACM conference on OOPSLA; pages 161-173; 
http://www.cs.ubc.ca/labs/spl/papers/2002/oopsla02-patterns.pdf (22.05.2007) 

 
[Hillside]  Hillside.net – Online Pattern Catalog 
  http://hillside.net/patterns/onlinepatterncatalog.htm (26.06.2006) 
 
[Hohmann98] Getting Started With Patterns 
  Luke Hohmann 
  1998; Software Development Magazine, February issue;  

http://www.lukehohmann.com/paper-gettingstartedwithpatterns.php (26.06.2006) 
 
[Langer06] Java Generics – Frequently Asked Questions  

Angelika Langer 
  2007; http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.pdf (03.06.2007) 
 
[Larman04] Applying UML and Patterns – An Introduction to Object—Oriented Analysis and Design and Iterative Development 
  Craig Larman 
  2004; 3rd Edition; Prentice Hall; ISBN 0131489062; http://authors.phptr.com/larman/uml_ooad/index.html  
 

http://www.martinfowler.com/articles/designDead.html
http://www.martinfowler.com/bliki/CallSuper.html
http://www.martinfowler.com/articles/writingPatterns.html
http://gafter.blogspot.com/2006/12/super-type-tokens.html
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf
http://www.paulgraham.com/icad.html
http://www.hacknot.info/hacknot/action/showPrintableEntry?eid=93
http://relevancellc.com/2007/5/17/design-patterns-are-code-smells.html
http://www.cs.ubc.ca/labs/spl/papers/2002/oopsla02-patterns.pdf
http://hillside.net/patterns/onlinepatterncatalog.htm
http://www.lukehohmann.com/paper-gettingstartedwithpatterns.php
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.pdf
http://authors.phptr.com/larman/uml_ooad/index.html


EVALUATING SOFTWARE DESIGN PATTERNS MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 196 of 197 

[Lea93]  Christopher Alexander: An Introduction for Object—Oriented Designers 
  Doug Lea  
  1993; http://g.oswego.edu/dl/ca/ca/ca.html (23.06.2006) 
 
[Lea00]  Patterns—Discussion FAQ 
  Doug Lea (maintained by) 
  2000; http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html (23.06.2006) 
 
[Livshits05] Turning Eclipse Against Itself: Finding Bugs in Eclipse Code Using Lightweight Static Analysis 

V. Benjamin Livshits 
2005; Eclipsecon ‗05 Research Exchange;  
http://suif.stanford.edu/~livshits/papers/pdf/eclipsecon05-checklipse.pdf (14.04.2007) 

 
[Meyer03]  The power of abstraction, reuse and simplicity: an object—oriented library for event—driven design 
  Bertrand Meyer 

2003; Festschrift in Honor of Ole-Johan Dahl, Lecture Notes in Computer Science 2635; 
http://se.ethz.ch/~meyer/publications/lncs/events.pdf (30.04.2007) 

 
[Meyer06]  Componentization: The Visitor Example 

Bertrand Meyer and Karine Arnout  
2006; Computer (IEEE); http://se.ethz.ch/~meyer/publications/computer/visitor.pdf (29.04.2007) 

 
[McCormick01] AntiPatterns 
  Hays W. McCormick and Raphael C. Malveau 
  2001; Dr. Dobb's Journal, July 22; 

http://www.ddj.com/article/printableArticle.jhtml?articleID=184410581&dept_url=/ (22.06.2006) 
 
[MDA]  OMG Model Driven Architecture 

http://www.omg.org/mda/ 
 
[Norvig96] Design Patterns in Dynamic Programming 
  Peter Norvig  

1996; http://norvig.com/design-patterns/design-patterns.ppt (21.06.2006) 
 
[Orme05]  Java does Duck Typing 
  David Orme  

2005; http://www.coconut-palm-software.com/the_visual_editor/?p=25 (07.07.2007) 
 
[PPR]  Portland Pattern Repository 
  http://c2.com/cgi/wiki (23.06.2006) 
 
[Rode07a] Evaluating Software Design Patterns – Thesis Specification  
  Gunni Rode 
  2007; http://www.rode.dk/thesis/download/thesis-specification.pdf 
 
[Rode07b] Evaluating Software Design Patterns – Thesis Defence 
  Gunni Rode 
  2007; http://www.rode.dk/thesis/download/thesis-defence.pps 
 
[Rogers01] Encapsulation is not information hiding 
  Paul Rogers 
  2001; JavaWorld; http://www.javaworld.com/cgi-bin/mailto/x_java.cgi (03.05.2007) 
 
[RUP]  Rational Unified Process 

http://www-306.ibm.com/software/awdtools/rup/ 
 
[Schmidt]  Overview of Object—Oriented Design Principles and Techniques 
  Douglas Schmidt 
  http://www.cs.wustl.edu/~schmidt/PDF/ood-overview4.pdf (19.03.2007) 
  
[Schmidt00] Pattern—Oriented Software Architecture – Patterns for Concurrent and Networked Objects, Volume 2 
  Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann 
  2001; John Wiley & Sons, Inc.; ISBN 0471606952 
 
[SEI]  Carnegie Mellon Software Engineering Institute – Software Technology Roadmap 
  http://www.sei.cmu.edu/str/descriptions/ (19.02.2007) 
 
[Sethi96]  Programming Languages – Concepts & Constructs 
  Ravi Sethi 
  1996; 2nd Edition, Addison—Wesley; ISBN 0201590654 

http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html
http://suif.stanford.edu/~livshits/papers/pdf/eclipsecon05-checklipse.pdf
http://se.ethz.ch/~meyer/publications/lncs/events.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://www.ddj.com/article/printableArticle.jhtml?articleID=184410581&dept_url=/
http://www.omg.org/mda/
http://norvig.com/design-patterns/design-patterns.ppt
http://www.coconut-palm-software.com/the_visual_editor/?p=25
http://c2.com/cgi/wiki
http://www.rode.dk/thesis/download/thesis-specification.pdf
http://www.rode.dk/thesis/download/thesis-defence.pps
http://www.javaworld.com/cgi-bin/mailto/x_java.cgi
http://www-306.ibm.com/software/awdtools/rup/
http://www.cs.wustl.edu/~schmidt/PDF/ood-overview4.pdf
http://www.sei.cmu.edu/str/descriptions/


EVALUATING SOFTWARE DESIGN PATTERNS MASTER’S THESIS 
— the “Gang of Four” patterns implemented in Java 6 
 

Gunni Rode — http://www.rode.dk/thesis   Page 197 of 197 

[Sierra06]  SCJP Sun Certified Programmer for Java 5 – Study Guide 
  Kathy Sierra and Bert Bates 
  2006; McGraw—Hill; ISBN 0072253606 
 
[Stroustrup91] The C++ Programming Language 
  Bjarne Stroustrup 
  1991; 2nd Edition, Addison—Wesley; ISBN 0201539926 

 
[Sullivan02a] Advanced Programming Language Features for Executable Design Patterns — Better Patterns Through Reflection 

Gregory T. Sullivan 
2002; ftp://publications.ai.mit.edu/ai-publications/2002/AIM-2002-005.pdf (18.05.2007) 

 
[Sullivan02b] Advanced Programming Language Features and Software Engineering: Friend or Foe? 

Gregory T. Sullivan 
2002; http://people.csail.mit.edu/gregs/proglangsandsofteng.ppt (18.05.2007) 

 
[Taibi07]  Design Pattern Formalization Techniques 
  Toufik Taibi 
  2007; IGI publishing; ISBN 1599042193 

 
[UML05]  Unified Modelling Language 2.0 
  Formal/05-07-04, Formal/05-07-05; ISO/IEC 19501; 
  2005; Object Management Group (OMG); 

http://www.omg.org/technology/documents/formal/uml.htm (20.06.2006) 
 

[Vieiro06]  Singletonitis 
  Antonio Vieiro 

2006; http://www.antonioshome.net/blog/pivot/entry.php?id=30 (20.05.2007) 
 

[Vlissides97] Patterns: The Top Ten Misconceptions 
  John Vlissides  

1997; Object Magazine;  
http://www.research.ibm.com/designpatterns/pubs/top10misc.html (20.01.2007) 

 
[WirfsBrock90] Designing Object—Oriented Software 
  Rebecca Wirfs—Brock, Brian Wilkerson, and Lauren Wiener  
  1990; Prentice Hall; ISBN 0136298257 

  

ftp://publications.ai.mit.edu/ai-publications/2002/AIM-2002-005.pdf
http://people.csail.mit.edu/gregs/proglangsandsofteng.ppt
http://www.omg.org/technology/documents/formal/uml.htm
http://www.antonioshome.net/blog/pivot/entry.php?id=30
http://www.research.ibm.com/designpatterns/pubs/top10misc.html

	Preface
	Colophon
	Abstract
	Resumé
	Table of Contents
	List of Figures
	List of Tables
	Program Listings
	Introduction
	Motivation
	Goals
	Demarcations

	Thesis Summary
	Part One — Theory and Background
	Part Two — Evaluation
	Work Performed
	Theoretical
	Practical



	Object—Oriented Development
	Object—Oriented Concepts
	Concepts
	Themes

	Object—Oriented Methods
	Patterns

	Unified Modelling Language
	Patterns

	Object—Oriented Analysis
	Object—Oriented Design
	Patterns
	Architectural Patterns
	Analysis Patterns
	Design Patterns
	Idioms


	Object—Oriented Programming
	Object—Oriented Programming Language
	Patterns

	Summary

	Patterns
	Christopher Alexander
	Software Patterns
	Pattern Qualities
	Pattern Forces
	Pattern Elements
	“Gang of Four” Format

	Pattern Formalism
	Pattern Collections
	“Gang of Four” Pattern System

	Pattern Evolution
	Mining
	Anti—Patterns
	Proto Patterns
	Piecemeal Growth

	Pattern Application
	Usage
	Understanding

	Summary

	Related Work
	Language Support
	Implementation Level
	Discussion

	Dynamic Languages
	Common Lisp and Dylan
	Scheme

	Static Languages
	C++
	Java
	Java and AspectJ
	Eiffel

	Comparison
	Features
	Patterns

	Summary

	Evaluation Approach
	Focus
	Description
	Evaluation Goals
	Features

	Summary

	Implementation
	Software
	Modelling
	Design
	Source Code
	Testing
	Summary

	Comparative Evaluation
	Language Features
	Core Language Features
	Inheritance, Abstract Classes, and Interfaces
	Generic Types and Methods
	Nested and Anonymous Classes
	Enumerations
	Exception Handling
	Covariant Return Types
	Varargs
	Summary

	Reflection
	Class Literals
	Type Literals
	Constructors and Methods
	Dynamic Proxies
	Annotations
	Summary

	Special Language Mechanisms
	Synchronisation
	Serialization
	Cloning
	Class Loader and Weak References
	Summary

	Feature Observations
	Static vs. Runtime Protection
	Multiple Inheritance vs. Interfaces and Composition
	Templates vs. Generics
	Templates vs. Annotations
	Overloaded Operators vs. Dynamic Proxies


	Pattern Relationships
	Implementation Level
	Summary

	Detailed Evaluation
	Creational Patterns
	Abstract Factory
	Intent
	Structure
	Participants
	Implementation

	Builder
	Intent
	Structure
	Participants
	Implementation

	Factory Method
	Intent
	Structure
	Participants
	Implementation

	Prototype
	Intent
	Structure
	Participants
	Implementation

	Singleton
	Intent
	Structure
	Participants
	Implementation


	Structural Patterns
	Adapter
	Intent
	Structure
	Participants
	Implementation

	Bridge
	Intent
	Structure
	Participants
	Implementation

	Composite
	Intent
	Structure
	Participants
	Implementation

	Decorator
	Intent
	Structure
	Participants
	Implementation

	Facade
	Intent
	Structure
	Participants
	Implementation

	Flyweight
	Intent
	Structure
	Participants
	Implementation

	Proxy
	Intent
	Structure
	Participants
	Implementation


	Behavioural Patterns
	Chain of Responsibility
	Intent
	Structure
	Participants
	Implementation

	Command
	Intent
	Structure
	Participants
	Implementation

	Interpreter
	Intent
	Structure
	Participants
	Implementation

	Iterator
	Intent
	Structure
	Participants
	Implementation

	Mediator
	Intent
	Participants
	Implementation

	Memento
	Intent
	Structure
	Participants
	Implementation

	Observer
	Intent
	Structure
	Participants
	Implementation

	State
	Intent
	Structure
	Participants
	Implementation

	Strategy
	Intent
	Structure
	Participants
	Implementation

	Template Method
	Intent
	Structure
	Participants
	Implementation

	Visitor
	Intent
	Structure
	Participants
	Implementation


	Summary

	Evaluation Conclusions
	Implementation Compliance
	Language Features
	High—Lights
	Abstract Factory and Factory Method
	Perspective

	Memento
	Perspective

	Observer
	Perspective

	Proxy and State
	Perspective

	Singleton
	Perspective


	Evaluation Approach

	Conclusion
	Perspective
	Results
	Future Work
	Final Remarks

	Bibliography

