
Evaluating Software Design Patterns Thesis Specification

Evaluering af Software Design Patterns Arbejdsbeskrivelse

Gunni Rode — http://www.rode.dk/thesis 1/5

Evaluating Software Design Patterns

— the “Gang of Four” patterns implemented in Java 6

Thesis Specification

(5 pages)

August 2007

Gunni Rode

 http://www.rode.dk/thesis

Supervisor: Professor Eric Jul

http://www.rode.dk/thesis

Evaluating Software Design Patterns Thesis Specification

Evaluering af Software Design Patterns Arbejdsbeskrivelse

Gunni Rode — http://www.rode.dk/thesis 2/5

Table of Contents

Table of Contents.. 2

Introduction .. 2

Goals ... 3

Motivation ... 3

Participant, Supervisor, Credit, and Time Frame ... 3

Project Phases ... 3

Bibliography .. 5

Introduction

Designing and developing complex software systems is not, and has never been, an easy task. On the

contrary, the process is often very time consuming; it requires interaction between many different

people, skills, and roles, internally and externally. The entire process, therefore, worst of all, tends to be

error prone, not forgetting costly. Even more so, the larger and more complex the system is, the worse

these factors seem to become. However, even the most complex systems are built by using smaller parts;

a part can be anything from an entire subsystem, native to the language or otherwise, to a specific file or

class. Such parts may in turn be built using even smaller parts, and so forth, and therefore need to

communicate to function. If we view a part as a problem to be solved, one approach to identify re—

occurring problems and their well—proven solutions is to use Software Design Patterns.

A pattern is based on empirical knowledge and communicates when the pattern is applicable as well as

the solution to the problem at hand (see for example [PPR; Hillside; Lea00]). Patterns are named and

written using a consistent format, thereby allowing both developers and others to communicate using a

common vocabulary, or language, thus facilitating the entire design and development process. The notion

of patterns was originally coined by Christopher Alexander [Alexander77] within the field of architecture,

but has been shown to be applicable in many other areas as well, but perhaps most notably within the

field of computer science. Arguably some of the most utilised software design patterns are the patterns

authored by Gamma et al., dubbed the ―Gang of Four‖ patterns [Gamma95]. They pertain to Object—

Oriented (OO) design, and describe communicating objects and classes that are customized to solve a

general design problem in a particular OO context [Gamma95, p.3]. The pattern descriptions provide

canonical implementations in C++ and/or Smalltalk, and discuss numerous language issues to be aware of

during implementation. We wish to implement the ―Gang of Four‖ patterns in Java 6 to evaluate how

features found in Java can be utilised in the application of the patterns, for example (runtime) features

such as annotations, closures, reflection, and dynamic proxies. The objective is to provide a subjective

evaluation, not a definitive conclusion as this goes against the very idea of design patterns, which may be

useful in disclosing how the ―Gang of Four‖ patterns and Java 6 can cooperate.

Evaluating Software Design Patterns Thesis Specification

Evaluering af Software Design Patterns Arbejdsbeskrivelse

Gunni Rode — http://www.rode.dk/thesis 3/5

Goals

The main goal of this Master Thesis is to obtain a Master Degree in Computer Science at the University of

Copenhagen. The specific goals for the content of the thesis are:

I. Present an introduction to and a discussion about the theory deemed necessary to understand

topics covered by the evaluation. This will include OO; patterns in general with focus on

software design patterns, especially the ―Gang of Four‖ design patterns; and a discussion on

selected related works and topics.

II. Implement and evaluate the ―Gang of Four‖ design patterns in Java 6.

III. Present the evaluation outcome and comment on the findings separately for each evaluated

pattern and by juxtaposing the individual evaluations.

Motivation

The motivation for undertaking this project is for the undersigned to get a better understanding of design

patterns related to OO, in particular the ―Gang of Four‖ patterns and how they relate to Java 6. This is

relevant as the ―Gang of Four‖ patterns are frequently used in real—life systems, and so is Java, but Java

6 furthermore offers a range of versatile features that will be interesting to apply in the pattern

implementations.

Participant, Supervisor, Credit, and Time Frame

The work is carried out by Gunni Rode under the supervision of Professor Eric Jul at the department of

Computer Science, University of Copenhagen. The workload is 30 ECTS, and the thesis will be handed in

for grading no later than the 1st of September 2007.

Project Phases

The work on the thesis will be partitioned into several phases:

1. Understanding and describing the history and the basic theory behind patterns in general,

including Alexander’s work [Alexander77; Appleton00; Lea93], but focusing on software patterns;

2. Describing the relevant OO theory, in particular the OO development life—cycle with special

attention on how patterns can be aid the design (and implementation) process. Focus will be on

the ―Gang of Four‖ patterns, which will also be introduced in full;

3. Establish and explain the overall evaluation set—up required for the evaluation, including

describing the overall approach to the implementation. This is required as the evaluation will be

subjective, yielding subjective conclusions;

Evaluating Software Design Patterns Thesis Specification

Evaluering af Software Design Patterns Arbejdsbeskrivelse

Gunni Rode — http://www.rode.dk/thesis 4/5

4. Implement the ―Gang of Four‖ design patterns in Java 6 in accordance with the context

established in item 3, while recording particular useful features to be used in the evaluation;

5. Evaluation of the implementations authored in item 4. Each pattern will be evaluated

individually as well as collectively compared with the other patterns, to identify possible

common traits and issues;

6. Completing the thesis. The thesis will be concluded with conclusion on the work performed, as

well as an outlook and suggestions on further work.

The end result will be a thesis and a CD containing the developed code. A proposed outline of the major

chapters is listed below; each chapter is assigned an informal weight to indicate its contribution to the

overall work put into the thesis as well as its suggested number of pages (assuming 100 pages in total):

1. Introduction (1%, 3p) – Abstract, Foreword, Formalities, Goals, Thesis Summary;

2. Object—Oriented Development (12%, 14p) – Concepts, Analysis, Design, Programming,

Connection to Design Patterns, “Gang of Four”, etc;

3. Pattern Theory (13%, 14p) – Origin, Christopher Alexander, Design Patterns, Descriptions and

Properties, Software Design Patterns, “Gang of Four”, etc;

4. Related Work (8%, 7p) – Related Studies;

5. Comparative Evaluation (28%, 26p) – Identifying Common Traits, Language Features, Pattern

Relationships, etc;

6. Individual Evaluation (33%, 30p) – Pattern Description, Implementation, UML, Features used;

7. Evaluation Conclusions (4%, 4p) – General Subjective Conclusions based on 5 & 6;

8. Conclusion (1%, 2p) – Final Remarks, Conclusion, Follow—up on Goals, Further Work.

Chapters 1 & 8 will supply the introduction and conclusion (~2%, ~5p); chapters 2-4 will explain and

discuss the main theory (~33%, ~35p); while chapters 5-7 will contain the main work, i.e. implementation

and evaluation (~65%, 60p).

Evaluating Software Design Patterns Thesis Specification

Evaluering af Software Design Patterns Arbejdsbeskrivelse

Gunni Rode — http://www.rode.dk/thesis 5/5

Bibliography

Below is an initial list of references used.

[Alexander77] A Pattern Language – Towns, Buildings, Construction
 Christopher Alexander
 1977; Oxford University Press; ISBN 0195019199

[Appleton00] Patterns and Software – Essential Concepts and Terminology
 Brad Appleton
 2000; http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

[Gamma95] Design Patterns – Elements of Reusable Object—Oriented Software
 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
 1995; Addison Wesley Longman, Inc.; ISBN 0201633612

[Hillside] Hillside.net – Online Pattern Catalog
 http://hillside.net/patterns/onlinepatterncatalog.htm

[Lea93] Christopher Alexander: An Introduction for Object—Oriented Designers
 Doug Lea
 1993; http://g.oswego.edu/dl/ca/ca/ca.html

[Lea00] Patterns—Discussion FAQ
 Doug Lea (maintained by)
 2000; http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

[PPR] Portland Pattern Repository
 http://c2.com/cgi/wiki

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://hillside.net/patterns/onlinepatterncatalog.htm
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html
http://c2.com/cgi/wiki

	Table of Contents
	Introduction
	Goals
	Motivation
	Participant, Supervisor, Credit, and Time Frame
	Project Phases
	Bibliography

